[1] 马培华, 王政存. 盐湖资源的开发和综合利用技术[J]. 化学进展, 1995, 7(3): 214-218. MA P H, WANG Z C. Development and comprehensive utilization technology of salt lake resources[J]. Progress in Chemistry, 1995, 7(3): 214-218 (in Chinese). [2] 余红发. 盐湖地区高性能混凝土的耐久性、机理与使用寿命预测方法[D]. 南京: 东南大学, 2004. YU H F. Study on high performance concrete in salt lake: durability, mechanism and service life prediction[D]. Nanjing: Southeast University, 2004 (in Chinese). [3] 刘连新. 察尔汗盐湖及超盐渍土地区混凝土侵蚀及预防初探[J]. 建筑材料学报, 2001, 4(4): 395-400. LIU L X. Brief introduction on the study of erosion and prevention of concrete in salt lake and saline soil area of chaerhan, chaidamu[J]. Journal of Building Materials, 2001, 4(4): 395-400 (in Chinese). [4] 丁 锐, 贺尚旭. 氯氧镁水泥的耐水性改性研究进展[J]. 四川水泥, 2023(1): 20-22+25. DING R, HE S X. Research progress on water resistance modification of magnesium oxychloride cement[J]. Sichuan Cement, 2023(1): 20-22+25 (in Chinese). [5] 马 慧, 关博文, 王永维, 等. 氯氧镁水泥胶凝材料的研究进展[J]. 材料导报, 2015, 29(15): 103-107. MA H, GUAN B W, WANG Y W, et al. Research progress of magnesium oxychloride cement gelled material[J]. Materials Review, 2015, 29(15): 103-107 (in Chinese). [6] CHEN X Y, ZHANG T T, BI W L, et al. Effect of tartaric acid and phosphoric acid on the water resistance of magnesium oxychloride (MOC) cement[J]. Construction and Building Materials, 2019, 213: 528-536. [7] 黄 伟. 油菜秸秆灰分混凝土抗侵蚀性能的试验研究[D]. 长沙: 湖南农业大学, 2016. HUANG W. Experimental study on erosion performance of rape straw ash concrete[D].Changsha: Hunan Agricultural University, 2016 (in Chinese). [8] WANG Y C, WEI L Z, YU J T, et al. Mechanical properties of high ductile magnesium oxychloride cement-based composites after water soaking[J]. Cement and Concrete Composites, 2018, 97: 248-258. [9] CAO F, QIAO H X, LI Y K, et al. Effect of highland barley straw ash admixture on properties and microstructure of concrete[J]. Construction and Building Materials, 2022, 315: 125802. [10] 曹 锋, 谭 镇, 乔宏霞, 等. 青稞秸秆灰掺入氯氧镁水泥中的活性与作用机理[J]. 功能材料, 2021, 52(12): 12196-12202+12209. CAO F, TAN Z, QIAO H X, et al. Activityand mechanism of highland barley straw ash added into magnesium oxychloride cement[J]. Journal of Functional Materials, 2021, 52(12): 12196-12202+12209 (in Chinese). [11] 舒修远, 乔宏霞, 曹 锋, 等. 青稞秸秆灰对氯氧镁水泥砂浆粘结强度的影响[J]. 材料导报, 2023, 37(23): 88-93. SHU X Y, QIAO H X, CAO F, et al. Effect of highland barley straw ash on the bonding strength of magnesium oxychloride cement mortar[J]. Materials Reports, 2023, 37(23): 88-93 (in Chinese). [12] 杨晓明, 吴天宇, 陈永林. 人工加速锈蚀钢筋混凝土构件中钢筋锈蚀率与锈蚀电流的关系研究[J]. 硅酸盐通报, 2016, 35(10): 3410-3416. YANG X M, WU T Y, CHEN Y L. Relationship between the current and corrosion ratio in corroded reinforced concrete component obtained by artificial accelerated corrosion method[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(10): 3410-3416 (in Chinese). [13] 干伟忠, 金伟良, 高明赞. 混凝土中钢筋加速锈蚀试验适用性研究[J]. 建筑结构学报, 2011, 32(2): 41-47. GAN W Z, JIN W L, GAO M Z. Applicability study on accelerated corrosion methods of steel bars in concrete structure[J]. Journal of Building Structures, 2011, 32(2): 41-47 (in Chinese). [14] 曹 锋, 乔宏霞, 王鹏辉, 等. 新型活性混合材料青稞秸秆灰的制备及性能[J]. 工程科学与技术, 2022, 54(4): 155-163. CAO F, QIAO H X, WANG P H, et al. Preparation and properties of highland barley straw ash as new active mixed materials[J]. Advanced Engineering Sciences, 2022, 54(4): 155-163 (in Chinese). [15] 曹 锋, 乔宏霞, 李双营, 等. 青稞秸秆灰-氯氧镁水泥复合材料盐冻耦合损伤强度特性及孔隙特征[J]. 复合材料学报, 2023, 40(5): 2972-2987. CAO F, QIAO H X, LI S Y, et al. Strength and pore characteristics of highland barley straw ash-magnesium oxychloride cement composite under salt freezing coupling damage[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2972-2987 (in Chinese). [16] DU F, JIN Z, SHE W, et al. Chloride ions migration and induced reinforcement corrosion in concrete with cracks: A comparative study of current acceleration and natural marine exposure[J]. Construction and Building Materials, 2020, 263. [17] GARCIA V, FRANÇOIS R, CARCASSES M, et al. Potential measurement to determine the chloride threshold concentration that initiates corrosion of reinforcing steel bar in slag concretes[J]. Materials and Structures, 2014, 47(9): 1483-1499. [18] ANDRADE C, ALONSO C. Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method[J]. Materials and Structures, 2004, 37(9): 623-643. [19] ELSENER B, ANDRADE C, GULIKERS J, et al. Half-cell potential measurements: potential mapping on reinforced concrete structures[J]. Materials and Structures, 2003, 36(7): 461-471. [20] 许 晨. 混凝土结构钢筋锈蚀电化学表征与相关检/监测技术[D]. 杭州: 浙江大学, 2012: 33-50. XU C. Electrochemical characteristic and related testing and monitoring technology of the steel corrosion of concrete structures[D]. Hangzhou: Zhejiang University, 2012: 33-50 (in Chinese). [21] FAN L, MENG W N, TENG L, et al. Effect of steel fibers with galvanized coatings on corrosion of steel bars embedded in UHPC[J]. Composites Part B: Engineering, 2019, 177: 107445. [22] 刘国建. 严酷复合介质侵蚀下混凝土中钢筋腐蚀行为及机理[D]. 南京: 东南大学, 2019: 17-33. LIU G J. Corrosion behavior and mechanism of reinforcing steel under severe composite corrosive medium[D].Nanjing: Southeast University, 2019: 17-33 (in Chinese). [23] TANG F J, CHEN G D, BROW R K. Chloride-induced corrosion mechanism and rate of enamel- and epoxy-coated deformed steel bars embedded in mortar[J]. Cement and Concrete Research, 2016, 82: 58-73. [24] 金祖权, 孙 伟, 张云升, 等. 混凝土在硫酸盐、氯盐溶液中的损伤过程[J]. 硅酸盐学报, 2006, 34(5): 630-635. JIN Z Q, SUN W, ZHANG Y S, et al. Damage of concrete in sulfate and chloride solution[J]. Journal of the Chinese Ceramic Society, 2006, 34(5): 630-635 (in Chinese). [25] 路承功, 魏智强, 乔宏霞, 等. 盐渍土通电环境中钢筋混凝土损伤劣化及尺寸效应试验研究[J]. 材料导报, 2021, 35(16): 16042-16049. LU C G, WEI Z Q, QIAO H X, et al. Research on damage deterioration and size effect of reinforced concrete in saline soil powered-on environment[J]. Materials Reports, 2021, 35(16): 16042-16049 (in Chinese). [26] WANG P H. Durability analysis of magnesium oxychloride coated reinforced concrete under the combined effect of carbonization and water loss[J]. Emerging Materials Research, 2020: 1-13. [27] 元成方, 牛荻涛. 基于可靠度理论的海工混凝土结构寿命预测[J]. 武汉理工大学学报, 2013, 35(4): 73-79. YUAN C F, NIU D T. Life prediction of the marine concrete structure based on the reliability theory[J]. Journal of Wuhan University of Technology, 2013, 35(4): 73-79 (in Chinese). [28] 宋玉普, 冀晓东. 混凝土冻融损伤可靠度分析及剩余寿命预测[J]. 水利学报, 2006, 37(3): 259-263. SONG Y P, JI X D. Analysis on reliability of concrete under freezing-thawing action and evaluation of residual life[J]. Journal of Hydraulic Engineering, 2006, 37(3): 259-263 (in Chinese). [29] 关宇刚, 孙 伟, 缪昌文. 基于可靠度与损伤理论的混凝土寿命预测模型Ⅰ: 模型阐述与建立[J]. 硅酸盐学报, 2001, 29(6): 530-534. GUAN Y G, SUN W, MIAO C W. One service-life prediction model for the concrete based on the reliability and damage theories Ⅰ: narration and establishment of the model[J]. Journal of the Chinese Ceramic Society, 2001, 29(6): 530-534 (in Chinese). |