[1] 贾 飞, 阎王虎, 潘慧敏, 等. 初始损伤对喷射混凝土抗硫酸盐侵蚀性能的影响[J]. 硅酸盐通报, 2022, 41(7): 2258-2267. JIA F, YAN W H, PAN H M, et al. Effect of initial damage on sulfate attack resistance of shotcrete[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(7): 2258-2267 (in Chinese). [2] 苏美娟, 王子明, 赵 攀. 喷射混凝土及速凝剂的应用发展现状[J]. 混凝土世界, 2022(2): 34-40. SU M J, WANG Z M, ZHAO P. The application and development status of sprayed concrete and flash setting accelerating admixtures[J]. China Concrete, 2022(2): 34-40 (in Chinese). [3] XU Y D, HE T S, MA X D, et al. The research on mechanism of C-S-H nanocrystal improving early properties of shotcrete at low temperature by thermodynamic modelling[J]. Construction and Building Materials, 2022, 325: 126738. [4] 田四明, 王 伟, 李国良, 等. 川藏铁路隧道设计理念与主要原则[J]. 隧道建设, 2021, 41(4): 519-530. TIAN S M, WANG W, LI G L, et al. Design concept and main principles of tunnel on sichuan-tibet railway[J]. Tunnel Construction, 2021, 41(4): 519-530 (in Chinese). [5] 宁逢伟, 蔡跃波, 白 银, 等. 膨胀剂和硅灰改善C50喷射混凝土抗渗性能的研究[J]. 硅酸盐通报, 2019, 38(10): 3253-3259. NING F W, CAI Y B, BAI Y, et al. Research on impermeability improvement of C50 shotcrete with expansive agent and silica fume[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(10): 3253-3259 (in Chinese). [6] 王家滨, 牛荻涛. 喷射混凝土渗透性、孔结构和力学性能关系研究[J]. 硅酸盐通报, 2018, 37(7): 2101-2108. WANG J B, NIU D T. Relationship among permeability, pore structure and mechanical properties of shotcrete[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(7): 2101-2108 (in Chinese). [7] 田 琨, 陈 凯, 庄连蕊, 等. 无碱液体速凝剂对低温下硅酸盐水泥水化及性能的影响[J]. 新型建筑材料, 2018, 45(12): 72-75+85. TIAN K, CHEN K, ZHUANG L R, et al. Influence of alkali-free liquid quick-setting agent on the hydration and properties of Portland cement at low temperature[J]. New Building Materials, 2018, 45(12): 72-75+85 (in Chinese). [8] LIU Z Z, JIAO W X, SHA A M, et al. Portland cement hydration behavior at low temperatures: views from calculation and experimental study[J]. Advances in Materials Science and Engineering, 2017, 2017: 3927106. [9] FALL M, POKHAREL M. Strength development and sorptivity of tailings shotcrete under various thermal and chemical loads[J]. Canadian Journal of Civil Engineering, 2011, 38(7): 772-784. [10] 栗培龙, 岳 磊, 马 浩, 等. 喷射混凝土强度影响因素及增长特性研究[J]. 广西大学学报(自然科学版), 2022, 47(5): 1174-1183. LI P L, YUE L, MA H, et al. Investigation on influence factors and growth properties of shotcrete strength[J]. Journal of Guangxi University (Natural Science Edition), 2022, 47(5): 1174-1183 (in Chinese). [11] 杜 爽, 王 伟, 乔 敏, 等. 低温环境下液体速凝剂的适应性及强度增强机理研究[J]. 硅酸盐通报, 2024, 43(1): 61-70. DU S, WANG W, QIAO M, et al. Adaptation and strength enhancement mechanisms of liquid accelerators in low temperature[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(1): 61-70 (in Chinese). [12] 张付军, 曾鲁平. 西北地区冬季低温环境下长大隧道喷射混凝土的耐久性能研究[J]. 新型建筑材料, 2021, 48(11): 120-124. ZHANG F J, ZENG L P. Durability study of long tunnel shotcrete under cold drying environment in Northwest China[J]. New Building Materials, 2021, 48(11): 120-124 (in Chinese). [13] XU Y D, HE T S, YANG R H, et al. New insights into the impact of inorganic salt on cement pastes mixed with alkali free liquid accelerator in low temperature[J]. Journal of Building Engineering, 2023, 70: 106419. [14] 庞建勇, 陈旭鹏. 高活性矿物掺合料混凝土力学性能试验[J]. 硅酸盐通报, 2020, 39(10): 3143-3151. PANG J Y, CHEN X P. Mechanical properties of high active mineral admixture concrete[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(10): 3143-3151 (in Chinese). [15] NAWAB M S, ALI T, QURESHI M Z, et al. A study on improving the performance of cement-based mortar with silica fume, metakaolin, and coconut fibers[J]. Case Studies in Construction Materials, 2023, 19: e02480. [16] XU D S, TANG J H, HU X, et al. Influence of silica fume and thermal curing on long-term hydration, microstructure and compressive strength of ultra-high performance concrete (UHPC)[J]. Construction and Building Materials, 2023, 395: 132370. [17] 丁向群, 刘丹阳, 徐晓婉. 石膏、硅灰对硅酸盐胶凝材料早期抗压强度的影响[J]. 硅酸盐通报, 2017, 36(1): 33-37. DING X Q, LIU D Y, XU X W. Influence of gypsum and silica fume on early compressive strength of Portland cementing material[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(1): 33-37 (in Chinese). [18] 高 嵩, 班顺莉, 郭 嘉, 等. 硅灰对再生混凝土界面过渡区的影响[J]. 材料导报, 2023, 37(11): 97-103. GAO S, BAN S L, GUO J, et al. Effect of silica fume on interfacial transition zone of recycled concrete[J]. Materials Reports, 2023, 37(11): 97-103 (in Chinese). [19] BAGHERI A, ZANGANEH H, ALIZADEH H, et al. Comparing the performance of fine fly ash and silica fume in enhancing the properties of concretes containing fly ash[J]. Construction and Building Materials, 2013, 47: 1402-1408. [20] 陈 超, 孙振平. 硅灰对掺有无碱速凝剂水泥浆体性能的影响[J]. 材料导报, 2019, 33(14): 2348-2353. CHEN C, SUN Z P. Effect of silica fume on the properties of cement paste with alkali-free accelerator[J]. Materials Reports, 2019, 33(14): 2348-2353 (in Chinese). [21] 陈俊松, 王 伟, 曾鲁平, 等. 矿物掺合料与防腐剂对喷射混凝土耐久性的影响[J]. 混凝土, 2023(6): 91-94+108. CHEN J S, WANG W, ZENG L P, et al. Effect of mineral admixtures and anti-erosion agent on durability of shotcrete[J]. Concrete, 2023(6): 91-94+108 (in Chinese). [22] 刘 军, 李 瑶, 崔云鹏, 等. 低温硅灰-硅酸盐水泥复合胶凝体系力学性能及微观结构[J]. 沈阳建筑大学学报(自然科学版), 2013, 29(6): 1065-1071. LIU J, LI Y, CUI Y P, et al. Mechanical properties and microstructure of cementitious system with Portland cement and silica fume at low temperature[J]. Journal of Shenyang Jianzhu University (Natural Science), 2013, 29(6): 1065-1071 (in Chinese). [23] 李 瑶, 刘润清, 齐雯涵, 等. 硅灰粒径分布对混凝土微观结构及其低温抗压强度的影响[J]. 中国粉体技术, 2019, 25(6): 75-80. LI Y, LIU R Q, QI W H, et al. Effects of particle size distribution of silica fume on pore structure and compressive strength of concrete at low temperature[J]. China Powder Science and Technology, 2019, 25(6): 75-80 (in Chinese). [24] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 喷射混凝土用速凝剂: GB/T 35159—2017[S]. 北京: 中国标准出版社, 2017. General Administration of Quality Supervision, Standardization Administration of the People's Republic of China. Flash setting admixtures for shotcrete: GB/T 35159—2017[S]. Beijing: Standards Press of China, 2017 (in Chinese). [25] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 水泥胶砂流动度测定方法: GB/T 2419—2005[S]. 北京: 中国标准出版社, 2005. General Administration of Quality Supervision, Standardization Administration of the People's Republic of China. Test method for fluidity of cement mortar: GB/T 2419—2005[S]. Beijing: Standards Press of China, 2005 (in Chinese). [26] 中华人民共和国交通运输部. 公路工程水泥及水泥混凝土试验规程: JTG 3420—2020[S]. 北京: 人民交通出版社, 2020. Ministry of Transport of the People's Republic of China. Test specification for cement and cement concrete for highway engineering. Testing Methods of Cement and Concrete for Highway Engineering: JTG 3420—2020[S]. Beijing: China Communication Press, 2020 (in Chinese). [27] WANG J F, MA L W, LU L L, et al. Improving the wear resistance and chloride permeability of sulphoaluminate cement by spindle-like calcium carbonate modification[J]. Materials Today Communications, 2022, 32: 104037. [28] ZHANG G, YANG Y Z, YANG H L, et al. Calcium sulphoaluminate cement used as mineral accelerator to improve the property of Portland cement at sub-zero temperature[J]. Cement and Concrete Composites, 2020, 106: 103452. [29] XU W B, ZHANG Y L, LIU B. Influence of silica fume and low curing temperature on mechanical property of cemented paste backfill[J]. Construction and Building Materials, 2020, 254: 119305. [30] RAMEZANIANPOUR A A, MOEINI M A. Mechanical and durability properties of alkali activated slag coating mortars containing nanosilica and silica fume[J]. Construction and Building Materials, 2018, 163: 611-621. [31] TRAMONTIN S M, ONGHERO L, NUNES C B, et al. Novel low-cost shrinkage-compensating admixture for ordinary Portland cement[J]. Construction and Building Materials, 2020, 230: 117024. [32] GAO D Y, MENG Y, YANG L, et al. Effect of ground granulated blast furnace slag on the properties of calcium sulfoaluminate cement[J]. Construction and Building Materials, 2019, 227: 116665. [33] TRAUCHESSEC R, MECHLING J M, LECOMTE A, et al. Hydration of ordinary Portland cement and calcium sulfoaluminate cement blends[J]. Cement and Concrete Composites, 2015, 56: 106-114. [34] 林培桐, 曾 宇, 赵永钢, 等. 纳米二氧化硅改性大掺量矿粉-水泥胶凝体系性能与微结构研究[J]. 硅酸盐通报, 2021, 40(2): 384-391+400. LIN P T, ZENG Y, ZHAO Y G, et al. Property and pore structure of nano-SiO2 modified high volume slag powder-cement cementitious system[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(2): 384-391+400 (in Chinese). [35] 吴中伟. 混凝土科学技术近期发展方向的探讨[J]. 硅酸盐学报, 1979, 7(3): 262-270. WU Z W. An approach to the recent trends of concrete science and technology[J]. Journal of the Chinese Ceramic Society, 1979, 7(3): 262-270 (in Chinese). |