[1] 陈宝春, 季 韬, 黄卿维, 等. 超高性能混凝土研究综述[J]. 建筑科学与工程学报, 2014, 31(3): 1-24. CHEN B C, JI T, HUANG Q W, et al. Review of research on ultra-high performance concrete[J]. Journal of Architecture and Civil Engineering, 2014, 31(3): 1-24 (in Chinese). [2] MENG W N, VALIPOUR M, KHAYAT K H. Optimization and performance of cost-effective ultra-high performance concrete[J]. Materials and Structures, 2016, 50(1): 29. [3] AZMEE N M, SHAFIQ N. Ultra-high performance concrete: from fundamental to applications[J]. Case Studies in Construction Materials, 2018, 9: e00197. [4] 崔 冰, 王景全, 刘加平. UHPC桥梁研究进展与规模化应用技术路径分析[J]. 中国公路学报, 2023, 36(9): 1-19. CUI B, WANG J Q, LIU J P. State-of-the-art of UHPC bridges: the paths towards industrial application[J]. China Journal of Highway and Transport, 2023, 36(9): 1-19 (in Chinese). [5] LIU J Z, WANG K J, ZHANG Q Q, et al. Influence of superplasticizer dosage on the viscosity of cement paste with low water-binder ratio[J]. Construction and Building Materials, 2017, 149: 359-366. [6] NANTHAGOPALAN P, HAIST M, SANTHANAM M, et al. Investigation on the influence of granular packing on the flow properties of cementitious suspensions[J]. Cement and Concrete Composites, 2008, 30(9): 763-768. [7] 张倩倩, 张丽辉, 冉千平, 等. 石灰石粉对水泥浆体流变性能的影响及作用机理[J]. 建筑材料学报, 2019, 22(5): 680-686. ZHANG Q Q, ZHANG L H, RAN Q P, et al. Effect of limestone powder on rheological properties of cement paste and its mechanism[J]. Journal of Building Materials, 2019, 22(5): 680-686 (in Chinese). [8] 张倩倩, 刘建忠, 张丽辉, 等. 矿物掺合料对低水胶比浆体流变性能的影响机制研究[J]. 材料导报, 2020, 34(22): 22054-22057+22086. ZHANG Q Q, LIU J Z, ZHANG L H, et al. Effect of mineral admixtures on rheological properties of paste with low water-binder ratio and its mechanism[J]. Materials Reports, 2020, 34(22): 22054-22057+22086 (in Chinese). [9] KYUNG-TAEK K, GUM S RY, JUNG-JUN PARK, et al. Effects of the composing materials on the rheological and mechanical properties of ultra-high performance concrete (UHPC)[C]. Symposium on Ultra-High Performance Fibre-Reinforced Concrete, France, 2013, 749-756. [10] 黄 伟. 矿物掺合料对超高性能混凝土的水化及微结构形成的影响[D]. 南京: 东南大学, 2017. HUANG W. Effect of supplementary cementitious materials on the hydration and microstructural development of ultra-high performance concrete[D]. Nanjing: Southeast University, 2017 (in Chinese). [11] 李珂珂, 李 龙, 何友林, 等. 超高性能混凝土流变特性及其调控研究[J]. 硅酸盐通报, 2022, 41(5): 1570-1577. LI K K, LI L, HE Y L, et al. Rheological characteristics of ultra-high performance concrete and its regulation[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(5): 1570-1577 (in Chinese). [12] 商涛平, 王洪新, 孙德安, 等. 超高性能混凝土工作性与流变性的关系研究[J]. 混凝土与水泥制品, 2023(9): 7-11. SHANG T P, WANG H X, SUN D A, et al. Research on the relationship between workability and rheology of ultra-high performance concrete[J]. China Concrete and Cement Products, 2023(9): 7-11 (in Chinese). [13] GELARDI G, FLATT R J. Working mechanisms of water reducers and superplasticizers[M]//Science and Technology of Concrete Admixtures. Amsterdam: Elsevier, 2016: 257-278. [14] MATSUZAWA K, SHIMAZAKI D, KAWAKAMI H, et al. Effect of non-adsorbed superplasticizer molecules on fluidity of cement paste at low water-powder ratio[J]. Cement and Concrete Composites, 2019, 97: 218-225. [15] KIM H, KOH T, PYO S. Enhancing flowability and sustainability of ultra high performance concrete incorporating high replacement levels of industrial slags[J]. Construction and Building Materials, 2016, 123: 153-160. [16] YU R, SPIESZ P, BROUWERS H J H. Mix design and properties assessment of ultra-high performance fibre reinforced concrete (UHPFRC)[J]. Cement and Concrete Research, 2014, 56: 29-39. [17] 高绪明. 钢纤维对超高性能混凝土性能影响的研究[D]. 长沙: 湖南大学, 2013. GAO X M. Research on the performance of UHPC with steel fiber[D]. Changsha: Hunan University, 2013 (in Chinese). [18] YU R, ZHOU F J, YIN T Y, et al. Uncovering the approach to develop ultra-high performance concrete (UHPC) with dense meso-structure based on rheological point of view: experiments and modeling[J]. Construction and Building Materials, 2021, 271: 121500. [19] 郑晓博, 韩方玉, 刘建忠, 等. 偏高岭土对超高性能混凝土流变及纤维分布的影响[J]. 硅酸盐学报, 2021, 49(11): 2375-2383. ZHENG X B, HAN F Y, LIU J Z, et al. Effect of metakaolin on rheological properties and fiber distribution of ultra-high performance concrete[J]. Journal of the Chinese Ceramic Society, 2021, 49(11): 2375-2383 (in Chinese). [20] LIU M, LEI J H, BI Y, et al. Preparation of polycarboxylate-based superplasticizer and its effects on zeta potential and rheological property of cement paste[J]. Journal of Wuhan University of Technology-Mater Science Edition, 2015, 30(5): 1008-1012. [21] 刘 明, 张 磊, 杨 文, 等. 不同结构聚羧酸减水剂对水泥-硅灰浆体黏度和吸附行为的影响[J]. 硅酸盐学报, 2022, 50(2): 445-451. LIU M, ZHANG L, YANG W, et al. Effect of polycarboxylate superplasticizer with different structure on viscosity and adsorption behavior of cement-silica fume paste[J]. Journal of the Chinese Ceramic Society, 2022, 50(2): 445-451 (in Chinese). [22] 董新越, 孙海燕, 梁荣创, 等. 两种长度玄武岩纤维对水泥胶砂性能影响的对比研究[J]. 粉煤灰综合利用, 2022, 36(5): 67-71. DONG X Y, SUN H Y, LIANG R C, et al. Study on the effect of basalt fiber length-diameter ratio on the properties of cement mortar[J]. Fly Ash Comprehensive Utilization, 2022, 36(5): 67-71 (in Chinese). [23] WU Z M, KHAYAT K H, SHI C J. Changes in rheology and mechanical properties of ultra-high performance concrete with silica fume content[J]. Cement and Concrete Research, 2019, 123: 105786. [24] 王圣杰, 李 兵, 李传习, 等. 超高性能混凝土流动性与流变性关系[J]. 硅酸盐学报, 2023, 51(8): 1962-1970. WANG S J, LI B, LI C X, et al. Flowability and rheological properties of ultra-high performance concrete[J]. Journal of the Chinese Ceramic Society, 2023, 51(8): 1962-1970 (in Chinese). [25] 苏文德. 钢纤维自密实混凝土的流变参数及其剪切增稠特性研究[J]. 海洋工程, 2015, 33(6): 70-74. SU W D. Rheological parameters and shear thickening behavior of fresh steel-fiberreinforced self-compacting concrete[J]. The Ocean Engineering, 2015, 33(6): 70-74 (in Chinese). |