[1] 尹飞龙, 欧阳东, 温喜廉, 等. 海砂与河砂、尾砂作为建筑用砂的比较研究[J]. 混凝土, 2011(12): 73-75+78. YIN F L, OUYANG D, WEN X L, et al. Comparative study of sea sand, river sand and tailing sand which using as building sand[J]. Concrete, 2011(12): 73-75+78 (in Chinese). [2] LIU X Y, LIU R D, LYU K, et al. A quantitative evaluation of size and shape characteristics for desert sand particles[J]. Minerals, 2022, 12(5): 581. [3] LUO F J, HE L, PAN Z, et al. Effect of very fine particles on workability and strength of concrete made with dune sand[J]. Construction and Building Materials, 2013, 47: 131-137. [4] ZHANG G X, SONG J X, YANG J S, et al. Performance of mortar and concrete made with a fine aggregate of desert sand[J]. Building and Environment, 2006, 41(11): 1478-1481. [5] ZHANG M H, ZHU X Z, SHI J Y, et al. Utilization of desert sand in the production of sustainable cement-based materials: a critical review[J]. Construction and Building Materials, 2022, 327: 127014. [6] LI L, JIA P, DONG J F, et al. Effects of cement dosage and cooling regimes on the compressive strength of concrete after post-fire-curing from 800 ℃[J]. Construction and Building Materials, 2017, 142: 208-220. [7] MARZIEH S, NAN H, NEGAR E K, et al. Residual compressive strength of concrete after exposure to high temperatures: a review and probabilistic models[J]. Fire Safety Journal, 2023, 135: 103698. [8] 陈宗平, 周春恒, 李 伊, 等. 高温后再生混凝土力学性能研究[J]. 建筑结构学报, 2017, 38(12): 105-113. CHEN Z P, ZHOU C H, LI Y, et al. Research on mechanical behavior of recycled aggregate concrete after high temperatures[J]. Journal of Building Structures, 2017, 38(12): 105-113 (in Chinese). [9] 吴耀鹏, 李彦豪, 张 旭, 等. 水胶比和粉煤灰掺量对混凝土高温后抗压强度的影响[J]. 建筑结构, 2019, 49(22): 93-96. WU Y P, LI Y H, ZHANG X, et al. Influences of water-binder ratio and fly-ash replacement level on compressive strength of concrete after high temperature[J]. Building Structure, 2019, 49(22): 93-96 (in Chinese). [10] 赵东拂, 刘 梅. 高强混凝土高温后剩余强度及无损检测试验研究[J]. 建筑结构学报, 2015, 36(增刊2): 365-372. ZHAO D F, LIU M. Experimental study on residual strength and nondestructive testing of high strength concrete after high temperature[J]. Journal of Building Structures, 2015, 36(supplement 2): 365-372 (in Chinese). [11] 刘 宁, 刘海峰, 杨 浩, 等. 高温对沙漠砂混凝土抗压强度的影响[J]. 广西大学学报(自然科学版), 2018, 43(4): 1581-1587. LIU N, LIU H F, YANG H, et al. Influence of high temperature on compressive strength of desert sand concrete[J]. Journal of Guangxi University (Natural Science Edition), 2018, 43(4): 1581-1587 (in Chinese). [12] LIU Y J, YANG W W, CHEN X L, et al. Effect of desert sand on the mechanical properties of desert sand concrete (DSC) after elevated temperature[J]. Advances in Civil Engineering, 2021, 2021: 3617552. [13] LIU H F, CHEN X L, CHE J L, et al. Mechanical performances of concrete produced with desert sand after elevated temperature[J]. International Journal of Concrete Structures and Materials, 2020, 14(1): 26. [14] 戎虎仁, 顾静宇, 曹海云, 等. 高温后混凝土强度及其表观特征变化规律试验研究[J]. 混凝土, 2019(7): 1-5. RONG H R, GU J Y, CAO H Y, et al. Experimental research on transformation law of mechanical properties and apparent characteristics of concrete after high temperature[J]. Concrete, 2019(7): 1-5 (in Chinese). [15] 李玉根, 张慧梅, 刘光秀, 等. 风积砂混凝土基本力学性能及影响机理[J]. 建筑材料学报, 2020, 23(5): 1212-1221. LI Y G, ZHANG H M, LIU G X, et al. Mechanical properties and influence mechanism of aeolian sand concrete[J]. Journal of Building Materials, 2020, 23(5): 1212-1221 (in Chinese). [16] 张 白, 陈 俊, 杨 鸥, 等. 高温后混凝土质量损失及抗压强度退化规律试验研究[J]. 建筑结构, 2019, 49(4): 76-81. ZHANG B, CHEN J, YANG O, et al. Experimental study on mass loss and compressive strength degradation law of concrete after high temperature exposure[J]. Building Structure, 2019, 49(4): 76-81 (in Chinese). [17] 刘 超, 林 鑫, 朱 超, 等. 风积沙应用于混凝土的研究进展[J]. 材料科学与工程学报, 2022, 40(4): 695-705. LIU C, LIN X, ZHU C, et al. Research progress on application of aeolian sand in concrete[J]. Journal of Materials Science and Engineering, 2022, 40(4): 695-705 (in Chinese). [18] 吴应雄, 郑新颜, 黄 伟, 等. 超高性能混凝土-既有普通混凝土界面粘结性能研究综述[J]. 材料导报, 2023, 37(16): 144-154. WU Y X, ZHENG X Y, HUANG W, et al. Review of interface bond behavior between ultra-high performance concrete and existing normal concrete[J]. Materials Reports, 2023, 37(16): 144-154 (in Chinese). [19] 蒋晓星, 孙振平, 杨正宏, 等. 风积沙的特性及应用[J]. 粉煤灰综合利用, 2018, 31(1): 65-69. JIANG X X, SUN Z P, YANG Z H, et al. Properties and application of aeolian sand[J]. Fly Ash Comprehensive Utilization, 2018, 31(1): 65-69 (in Chinese). [20] 郑木莲, 荆海洋, 陈 旺, 等. 天然风积沙基本特性及火山灰活性研究[J]. 硅酸盐通报, 2021, 40(1): 163-171. ZHENG M L, JING H Y, CHEN W, et al. Experimental study on basic characteristics and pozzolanic activity of natural aeolian sand[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(1): 163-171 (in Chinese). [21] 安新正, 刘浩楠, 张翠霞, 等. 破碎卵石再生混凝土折压比试验研究[J]. 河北工程大学学报(自然科学版), 2021, 38(2): 14-18+103. AN X Z, LIU H N, ZHANG C X, et al. Experimental research on the compression ratio of recycled crushed pebbles concrete[J]. Journal of Hebei University of Engineering (Natural Science Edition), 2021, 38(2): 14-18+103 (in Chinese). [22] 黎吉军. 影响预拌混凝土折压比的试验研究[J]. 混凝土世界, 2016(11): 86-90. LI J J. Experimental study on influence of ready-mixed concrete folding-compression ratio[J]. China Concrete, 2016(11): 86-90 (in Chinese). [23] SHEN Y, PENG C, HAO J, et al. High temperature resistance of desert sand concrete: strength change and intrinsic mechanism[J]. Construction and Building Materials, 2022, 327: 126948. [24] 李玉根, 张慧梅, 陈少杰, 等. 风积沙混凝土盐冻多尺度劣化机制[J]. 复合材料学报, 2023, 40(4): 2331-2342. LI Y G, ZHANG H M, CHEN S J, et al. Multi-scale degradation mechanism of aeolian sand concrete under salt-frost condition[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2331-2342 (in Chinese). |