[1] LI V C, LEUNG C K Y. Steady-state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics, 1992, 118(11): 2246-2264. [2] LI M, LI V C. Behavior of ECC/concrete layered repair system under drying shrinkage conditions[J]. Restoration of Buildings and Monuments, 2006, 12(2): 143-160. [3] 龚建清, 罗鸿魁, 张 阳, 等. 减缩剂和HCSA膨胀剂对UHPC力学性能和收缩性能的影响[J]. 材料导报, 2021, 35(8): 8042-8048+8063. GONG J Q, LUO H K, ZHANG Y, et al. Effect of shrinkage reducing agent and HCSA expansion agent on mechanical properties and shrinkage properties of UHPC[J]. Materials Reports, 2021, 35(8): 8042-8048+8063 (in Chinese). [4] 黄政宇, 刘永强, 李操旺. 掺HCSA膨胀剂超高性能混凝土性能的研究[J]. 材料导报, 2015, 29(4): 116-121. HUANG Z Y, LIU Y Q, LI C W. Performance research of ultra high performance concrete incorporating HCSA expansion agent[J]. Materials Review, 2015, 29(4): 116-121 (in Chinese). [5] 李 彪, 徐礼华, 谷雨珊, 等. HCSA膨胀剂掺量对高强自密实混凝土性能影响研究[J]. 武汉大学学报(工学版), 2017, 50(1): 90-96. LI B, XU L H, GU Y S, et al. Investigation on influence of HCSA expansive agent dosage on performance of high-strength self-compacting concrete[J]. Engineering Journal of Wuhan University, 2017, 50(1): 90-96 (in Chinese). [6] 卢京宇, 王 林, 雍 涵, 等. 复掺膨胀剂和纤维对混凝土性能的影响[J]. 材料导报, 2020, 34(增刊2): 1618-1622. LU J Y, WANG L, YONG H, et al. Influence of composite expansive agent and fiber on the performance of concrete[J]. Materials Reports, 2020, 34(supplement 2): 1618-1622 (in Chinese). [7] 陈 宇, 林熙杰, 李长辉, 等. 抗收缩工程水泥基复合材料力学性能研究[J]. 硅酸盐通报, 2023, 42(5): 1599-1607. CHEN Y, LIN X J, LI C H, et al. Mechanical performance of anti-shrink engineering cementitious composites[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(5): 1599-1607 (in Chinese). [8] 赵继之, 辛公锋, 陶慕轩, 等. 超高性能混凝土单轴拉、压循环作用下力学性能及其本构模型研究[J]. 工程力学, 2024, 41(4): 81-93. ZHAO J Z, XIN G F, TAO M X, et al. Mechanical properties and constitutive model of ultrahigh performance concrete material under uniaxial tension and compression cycles[J]. Engineering Mechanics, 2024, 41(4): 81-93 (in Chinese). [9] WANG S N, XU L H, YIN C R, et al. Experimental investigation on the damage behavior of ultra-high performance concrete subjected to cyclic compression[J]. Composite Structures, 2021, 267: 113855. [10] SHI Z C, SU Q T, KAVOURA F, et al. Uniaxial tensile response and tensile constitutive model of ultra-high performance concrete containing coarse aggregate (CA-UHPC)[J]. Cement and Concrete Composites, 2023, 136: 104878. [11] KANDA T, LIN Z, LI V C. Tensile stress-strain modeling of pseudostrain hardening cementitious composites[J]. Journal of Materials in Civil Engineering, 2000, 12(2): 147-156. [12] 朱俊涛, 李志强, 王新玲, 等. 工程用水泥基复合材料单轴受拉本构关系模型[J]. 应用基础与工程科学学报, 2021, 29(2): 471-482. ZHU J T, LI Z Q, WANG X L, et al. Constitutive relationship model of engineered cementitious composites under uniaxial tension[J]. Journal of Basic Science and Engineering, 2021, 29(2): 471-482 (in Chinese). [13] HAN T S, FEENSTRA P H, BILLINGTON S L. Simulation of highly ductile fiber-reinforced cement-based composite components under cyclic loading[J]. Aci Structural Journal, 2003, 100(6): 749-757. [14] 徐世烺, 蔡向荣, 张英华. 超高韧性水泥基复合材料单轴受压应力-应变全曲线试验测定与分析[J]. 土木工程学报, 2009, 42(11): 79-85. XU S L, CAI X R, ZHANG Y H. Experimental measurement and analysis of the axial compressive stress-strain curve of ultra high toughness cementitious composites[J]. China Civil Engineering Journal, 2009, 42(11): 79-85 (in Chinese). [15] 徐世烺, 王洪昌. 超高韧性水泥基复合材料与钢筋粘结本构关系的试验研究[J]. 工程力学, 2008, 25(11): 53-61. XU S L, WANG H C. Experimental study on bond-slip between ultra high toughness cementitious composites and steel bar[J]. Engineering Mechanics, 2008, 25(11): 53-61 (in Chinese). [16] KACHANOV L M. Rupture time under creep conditions[J]. International Journal of Fracture, 1999, 97(1): 11-18. [17] MAZARS J, HAMON F, GRANGE S. A new 3D damage model for concrete under monotonic, cyclic and dynamic loadings[J]. Materials and Structures, 2015, 48(11): 3779-3793. [18] COMI C, PEREGO U. Fracture energy based bi-dissipative damage model for concrete[J]. International Journal of Solids and Structures, 2001, 38(36/37): 6427-6454. [19] DENG M K, PAN J J, LIANG X W. Uniaxial compressive test of high ductile fiber-reinforced concrete and damage constitutive model[J]. Advances in Civil Engineering, 2018: 4308084. [20] LEE J, FENVES G L. A plastic-damage concrete model for earthquake analysis of dams[J]. Earthquake Engineering & Structural Dynamics, 1998, 27(9): 937-956. [21] 李 杰, 吴建营. 混凝土弹塑性损伤本构模型研究 Ⅰ: 基本公式[J]. 土木工程学报, 2005, 38(9): 14-20. LI J, WU J Y. Elastoplastic damage constitutive model for concrete based on damage energy release rates, part Ⅰ: basic formulations[J]. China Civil Engineering Journal, 2005, 38(9): 14-20 (in Chinese). [22] 吴建营, 李 杰. 混凝土弹塑性损伤本构模型研究 Ⅱ: 数值计算和试验验证[J]. 土木工程学报, 2005, 38(9): 21-27. WU J Y, LI J. Study on elastoplastic damage constitutive model of concrete Ⅱ: numerical calculation and experimental verification[J]. China Civil Engineering Journal, 2005, 38(9): 21-27 (in Chinese). [23] JIRÁSEK M, ZIMMERMANN T. Rotating crack model with transition to scalar damage[J]. Journal of Engineering Mechanics, 1998, 124(3): 277-284. [24] 焦延涛, 程立平. 一种新的混凝土各向异性弹塑性损伤本构模型及其数值实施[J]. 工程力学, 2022, 39(8): 122-137. JIAO Y T, CHENG L P. A new anisotropic plastic-damage model and its numerical implementation for plain concrete[J]. Engineering Mechanics, 2022, 39(8): 122-137 (in Chinese). [25] 章 莉, 赵兰浩, 刘 智, 等. 循环荷载作用下的混凝土弹塑性损伤本构模型及数值实现[J]. 工程力学, 2023, 40(4): 152-161. ZHANG L, ZHAO L H, LIU Z, et al. An elastic-plastic damage constitutive model of concrete under cyclic loading and its numerical implementation[J]. Engineering Mechanics, 2023, 40(4): 152-161 (in Chinese). [26] KRAHL P A, CARRAZEDO R, EL DEBS M K. Mechanical damage evolution in UHPFRC: experimental and numerical investigation[J]. Engineering Structures, 2018, 170: 63-77. [27] 杲晓龙, 王俊颜, 郭君渊, 等. 循环荷载作用下超高性能混凝土的轴拉力学性能及本构关系模型[J]. 复合材料学报, 2021, 38(11): 3925-3938. GAO X L, WANG J Y, GUO J Y, et al. Axial tensile mechanical properties and constitutive relation model of ultra-high performance concrete under cyclic loading[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3925-3938 (in Chinese). [28] CAI J M, PAN J L, TAN J W, et al. Nonlinear finite-element analysis for hysteretic behavior of ECC-encased CFST columns[J]. Structures, 2020, 25: 670-682. [29] 李 可, 赵大鹏, 刘伟康, 等. ECC单轴受拉损伤本构模型研究[J]. 工程力学, 2022, 39(12): 120-129. LI K, ZHAO D P, LIU W K, et al. Research on damage constitutive model of engineered cementitious composites under uniaxial tension[J]. Engineering Mechanics, 2022, 39(12): 120-129 (in Chinese). [30] ZHAO D P, WANG C J, LI K, et al. An experimental and analytical study on a damage constitutive model of engineered cementitious composites under uniaxial tension[J]. Materials, 2022, 15(17): 6063. [31] 李贺东. 超高韧性水泥基复合材料试验研究[D]. 大连: 大连理工大学, 2009. LI H D. Experimental research on ultra high toughness cementitious composites[D].Dalian: Dalian University of Technology, 2009 (in Chinese). [32] SIMO J C, JU J W. Strain- and stress-based continuum damage models: I. Formulation[J]. International Journal of Solids and Structures, 1987, 23(7): 821-840. [33] FARIA R, OLIVER J, CERVERA M. A strain-based plastic viscous-damage model for massive concrete structures[J]. International Journal of Solids and Structures, 1998, 35(14): 1533-1558. |