[1] 宗 柳. IEA发布《全球能源回顾: 2021碳排放》报告[J]. 世界石油工业, 2022, 29(3): 80. ZONG L. IEA releases global energy review: 2021 carbon emissions report[J]. World Petroleum Industry, 2022, 29(3): 80 (in Chinese). [2] 张 宾, 赵有强, 林永权, 等. 水泥工业二氧化碳循环利用现状[J]. 中国水泥, 2021(4): 75-81. ZHANG B, ZHAO Y Q, LIN Y Q, et al. Status of carbon dioxide recycling in cement industry[J]. China Cement, 2021(4): 75-81 (in Chinese). [3] 马忠诚, 汪 澜. 水泥工业CO2减排及利用技术进展[J]. 材料导报, 2011, 25(19): 150-154. MA Z C, WANG L. Technical progress of emission-reduction and utilization of carbon dioxide in cement industry[J]. Materials Review, 2011, 25(19): 150-154 (in Chinese). [4] 何宏涛. 水泥生产二氧化碳排放分析和定量化探讨[J]. 水泥工程, 2009(1): 61-65. HE H T. Carbon dioxide emission in cement production and the quantitive research[J]. Cement Engineering, 2009(1): 61-65 (in Chinese). [5] 史 伟, 崔源声, 武夷山. 国外水泥工业低碳发展技术现状及前景展望[J]. 水泥, 2011(3): 13-16. SHI W, CUI Y S, WU Y S. Current status and prospect of low-carbon development technology of cement industry abroad[J]. Cement, 2011(3): 13-16 (in Chinese). [6] GOODBRAKE C J, YOUNG J F, BERGER R L. Reaction of beta-dicalcium silicate and tricalcium silicate with carbon dioxide and water vapor[J]. Journal of the American Ceramic Society, 1979, 62(3/4): 168-171. [7] 刘轶翔, 查晓雄. 再生混凝土的改性及其在钢管混凝土中应用的试验研究[J]. 建筑钢结构进展, 2011, 13(1): 36-42. LIU Y X, ZHA X X. The experimental study on modified property of recycled aggregate concrete and its application in concrete filled steel tube[J]. Progress in Steel Building Structures, 2011, 13(1): 36-42 (in Chinese). [8] WANG M L, LUO S, PHAM B, et al. Effect of CO2-mixing dose and prolonged mixing time on fresh and hardened properties of cement pastes[J]. Journal of Zhejiang University-Science A (Applied Physics & Engineering), 2023, 24(10): 886-898. [9] WILBERFORCE T, BAROUTAJI A, SOUDAN B, et al. Outlook of carbon capture technology and challenges[J]. Science of the Total Environment, 2019, 657: 56-72. [10] QIAN X, WANG J L, FANG Y, et al. Carbon dioxide as an admixture for better performance of OPC-based concrete[J]. Journal of CO2 Utilization, 2018, 25: 31-38. [11] GARTNER E. Industrially interesting approaches to “low-CO2” cements[J]. Cement and Concrete Research, 2004, 34(9): 1489-1498. [12] JANG J G, KIM G M, KIM H J, et al. Review on recent advances in CO2 utilization and sequestration technologies in cement-based materials[J]. Construction and Building Materials, 2016, 127: 762-773. [13] GALAN I, ANDRADE C, CASTELLOTE M. Natural and accelerated CO2 binding kinetics in cement paste at different relative humidities[J]. Cement and Concrete Research, 2013, 49: 21-28. [14] SHARMA D, GOYAL S. Accelerated carbonation curing of cement mortars containing cement kiln dust: an effective way of CO2 sequestration and carbon footprint reduction[J]. Journal of Cleaner Production, 2018, 192: 844-854. [15] ZHANG Q, FENG P, SHEN X, et al. Utilization of solid wastes to sequestrate carbon dioxide in cement-based materials and methods to improve carbonation degree: a review[J]. Journal of CO2 Utilization. 2023, 72: 102502. [16] GUNNING P J, HILLS C D, CAREY P J. Production of lightweight aggregate from industrial waste and carbon dioxide[J]. Waste Management, 2009, 29(10): 2722-2728. [17] ZHANG D, SHAO Y X. Early age carbonation curing for precast reinforced concretes[J]. Construction and Building Materials, 2016, 113: 134-143. [18] JANG J G, LEE H K. Microstructural densification and CO2 uptake promoted by the carbonation curing of belite-rich Portland cement[J]. Cement and Concrete Research, 2016, 82: 50-57. [19] 查晓雄, 刘轶翔. 外加剂的再生混凝土构件及制备方法: CN101787771A[P]. 2010-07-28. ZHA X X, LIU Y X. The recycled concrete member of the admixture and a preparation method: CN101787771A[P]. 2010-07-28 (in Chinese). [20] ZHU J, QU Z J, LIANG S Q, et al. Macroscopic and microscopic properties of cement paste with carbon dioxide curing[J]. Materials, 2022, 15(4): 1578. [21] MONKMAN S, MACDONALD M, HOOTON R D, et al. Properties and durability of concrete produced using CO2 as an accelerating admixture[J]. Cement and Concrete Composites, 2016, 74: 218-224. [22] 张 毅, 王 威. 微纳米气泡水对混凝土性能影响研究综述[J]. 混凝土与水泥制品, 2023(6): 21-25. ZHANG Y, WANG W. Review on the effect of micro-nano bubble water on the properties of concrete[J]. China Concrete and Cement Products, 2023(6): 21-25 (in Chinese). [23] WANG Y L, HE F X, YANG L. Influence of dry ice on the performance of Portland cement and its mechanism[J]. Construction and Building Materials, 2018, 188: 898-904. [24] YOUNSI A, TURCRY P, AÏT-MOKHTAR A, et al. Accelerated carbonation of concrete with high content of mineral additions: effect of interactions between hydration and drying[J]. Cement and Concrete Research, 2013, 43: 25-33. [25] ZHAN B J, XUAN D X, POON C S, et al. Mechanism for rapid hardening of cement pastes under coupled CO2-water curing regime[J]. Cement and Concrete Composites, 2019, 97: 78-88. [26] ROSTAMI V, SHAO Y X, BOYD A J, et al. Microstructure of cement paste subject to early carbonation curing[J]. Cement and Concrete Research, 2012, 42(1): 186-193. [27] ZHANG S P, GHOULEH Z, SHAO Y X. Effect of carbonation curing on efflorescence formation in concrete paver blocks[J]. Journal of Materials in Civil Engineering, 2020, 32: 04020127. [28] FERNANDEZBERTOS M, SIMONS S, HILLS C, et al. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2[J]. Journal of Hazardous Materials, 2004, 112(3): 193-205. [29] DROUET E, POYET S, LE BESCOP P, et al. Carbonation of hardened cement pastes: influence of temperature[J]. Cement and Concrete Research, 2019, 115: 445-459. |