[1] 李传习, 柯 璐, 陈卓异, 等. 正交异性钢桥面板弧形切口及其CFRP补强的疲劳性能[J]. 中国公路学报, 2021, 34(5): 63-75. LI C X, KE L, CHEN Z Y, et al. Fatigue behavior and CFRP reinforcement of diaphragm cutouts in orthotropic steel bridge decks[J]. China Journal of Highway and Transport, 2021, 34(5): 63-75 (in Chinese). [2] WANG Y, LI J H, DENG J, et al. Bond behaviour of CFRP/steel strap joints exposed to overloading fatigue and wetting/drying cycles[J]. Engineering Structures, 2018, 172: 1-12. [3] 王振镭, 李强利, 严初三, 等. 双酚A对环氧树脂固化反应的影响研究[J]. 热固性树脂, 2024, 39(1): 20-24. WANG Z L, LI Q L, YAN C S, et al. Effect of bisphenol-A on the curing reaction of epoxy resin[J]. Thermosetting Resin, 2024, 39(1): 20-24 (in Chinese). [4] SZEWCZAK A. Changes in the rheological and adhesive properties of epoxy resin used in the technology of reinforcement of structural elements with CFRP tapes[J]. Materials, 2023, 16(23): 7408. [5] 荣立平, 王 刚, 李志国, 等. SiO2杂化环氧树脂耐热性能研究[J]. 热固性树脂, 2023, 38(3): 29-33. RONG L P, WANG G, LI Z G, et al. Study on heat resistance of SiO2 hybrid epoxy resin[J]. Thermosetting Resin, 2023, 38(3): 29-33 (in Chinese). [6] KOTEŁKO M, LIS P, MACDONALD M. Load capacity probabilistic sensitivity analysis of thin-walled beams[J]. Thin-Walled Structures, 2017, 115: 142-153. [7] 元 强, 王 攒, 姚 灏, 等. 活性改性剂合成及其对环氧胶粘剂力学与界面粘接性能影响研究[J/OL]. 材料导报, 2024(11): 1-18 (2023-03-21)[2024-02-07]. http://kns.cnki.net/kcms/detail/50.1078.tb.20230330.1643.037.html. YUAN Q, WANG Z, YAO H, et al. Synthesis of reactive modifiers and their effects on mechanical and interfacial bonding properties of epoxy adhesives[J/OL]. Materials Reports, 2024(11): 1-18 (2023-03-21)[2024-02-07]. http://kns.cnki.net/kcms/detail/50.1078.tb.20230330.1643.037.html (in Chinese). [8] 陈卓异, 彭彦泽, 李传习, 等. 高温下双搭接钢-CFRP板胶粘界面力学性能试验[J]. 复合材料学报, 2021, 38(2): 449-460. CHEN Z Y, PENG Y Z, LI C X, et al. Experimental study for the adhesive interface mechanical properties of double lapped steel-CFRP plate at high temperature[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 449-460 (in Chinese). [9] 李传习, 李 游, 贺 君, 等. 固化剂对室温胶黏CFRP板/钢板界面性能的影响[J]. 建筑材料学报, 2021, 24(2): 339-347. LI C X, LI Y, HE J, et al. Effect of curing agent on interfacial performance of adhesively bonded CFRP laminate/steel plate cured at room temperature[J]. Journal of Building Materials, 2021, 24(2): 339-347 (in Chinese). [10] 袁智慧, 牛永平, 汪小伟, 等. 环氧树脂增韧机理及研究进展[J]. 热固性树脂, 2019, 34(6): 65-70. YUAN Z H, NIU Y P, WANG X W, et al. Toughening mechanism and research progress of epoxy resins[J]. Thermosetting Resin, 2019, 34(6): 65-70 (in Chinese). [11] KUNAL M, RAMAN P S. Effect of APTMS modification on multiwall carbon nanotube reinforced epoxy nanocomposites[J]. Composites Part B, 2019, 162: 425-432. [12] AL-MOSAWE A, AL-MAHAIDI R, ZHAO X L. Effect of CFRP properties, on the bond characteristics between steel and CFRP laminate under quasi-static loading[J]. Construction and Building Materials, 2015, 98: 489-501. [13] 陈子豪, 阮英波, 杨 杰. 悬浮改性耐高温环氧树脂基复合材料的性能与增韧机制[J]. 材料导报, 2023, 37(增刊2): 572-576. CHEN Z H, RUAN Y B, YANG J. Properties and toughening mechanism of suspension modified high temperature resistant epoxy resin matrix composites[J]. Materials Reports, 2023, 37(supplement 2): 572-576 (in Chinese). [14] ZHANG K H, WANG Z J, LUO Y. One-component epoxy resin adhesive featured with high storage stability based on microencapsulation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 683: 133045. [15] 李 游, 李传习, 郑 辉, 等. 固化剂混掺对高温下CFRP板-钢板界面黏结性能的影响[J]. 复合材料学报, 2021, 38(12): 4073-4089. LI Y, LI C X, ZHENG H, et al. Effect of curing agent mixing on interfacial bond behavior of glued CFRP plate-steel plate at elevated temperature[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4073-4089 (in Chinese). [16] SOLEILHET F, QUIERTANT M, BENZARTI K. Numerical modelling of the nonlinear shear creep behavior of FRP-concrete bonded joints[J]. Materials, 2023, 16(2): 801. [17] 王建杰, 张栩志, 苏延磊. 环氧树脂增韧改性的研究[J]. 热固性树脂, 2020, 35(2): 55-59. WANG J J, ZHANG X Z, SU Y L. Study on the toughening modification of epoxy resin[J]. Thermosetting Resin, 2020, 35(2): 55-59 (in Chinese). [18] KORAYEM H A, LI Y C, ZHANG H Q, et al. Effect of carbon nanotube modified epoxy adhesive on CFRP-to-steel interface[J]. Composites Part B, 2015, 79: 95-104. [19] OMRANI A, SIMON L C, ROSTAMI A A. The effects of alumina nanoparticle on the properties of an epoxy resin system[J]. Materials Chemistry and Physics, 2009, 114(1): 145-150. [20] SERIN H, YILDIZHAN Ş. Tensile properties and cost-property efficiency analyses of expanded polystyrene/chopped glass fiber/epoxy novel composite[J]. Journal of Mechanical Science and Technology, 2021, 35(1): 145-151. [21] 胡智枫, 段华军, 唐玉山, 等. 端环氧基聚苯乙烯低聚物增韧改性环氧树脂[J]. 热固性树脂, 2016, 31(6): 49-53. HU Z F, DUAN H J, TANG Y S, et al. Study on the epoxy-terminated polystyrene oligomer toughening epoxy resin[J]. Thermosetting Resin, 2016, 31(6): 49-53 (in Chinese). [22] 李璇蕊, 郑 婷, 王晓东, 等. 热塑性树脂增韧环氧树脂复合材料研究进展[J]. 哈尔滨工程大学学报, 2024, 45(4): 808-818. LI X R, ZHENG T, WANG X D, et al. Research progress on epoxy resin composites toughened by thermoplastic resin[J]. Journal of Harbin Engineering University, 2024, 45(4): 808-818 (in Chinese). [23] ROSTAMIYAN Y, HAMED MASHHADZADEH A, SALMANKHANI A. Optimization of mechanical properties of epoxy-based hybrid nanocomposite: effect of using nano silica and high-impact polystyrene by mixture design approach[J]. Materials and Design, 2013, 56: 1068-1077. [24] MIRMOHSENI A, ZAVAREH S. Modeling and optimization of a new impact-toughened epoxy nanocomposite using response surface methodology[J]. Journal of Polymer Research, 2011, 18(4): 509-517. [25] 马奇利, 张翠霞, 王 晗, 等. 温度对碳纳米管纤维/环氧树脂界面剪切强度的影响[J]. 上海大学学报(自然科学版), 2018, 24(6): 961-967. MA Q L, ZHANG C X, WANG H, et al. Temperature effect on interfacial shear strength of carbon nanotube fiber/epoxy resin composites[J]. Journal of Shanghai University (Natural Science Edition), 2018, 24(6): 961-967 (in Chinese). [26] SUN T, WU Z J, ZHUO Q, et al. Microstructure and mechanical properties of aminated polystyrene spheres/epoxy polymer blends[J]. Composites Part A: Applied Science and Manufacturing, 2014, 66: 58-64. [27] SHA Y, HUI C Y, KRAMER E J, et al. Fracture toughness and failure mechanisms of epoxy/rubber-modified polystyrene (HIPS) interfaces reinforced by grafted chains[J]. Macromolecules, 1996, 29(13): 4728-4736. [28] GU H B, MA C, LIANG C B, et al. A low loading of grafted thermoplastic polystyrene strengthens and toughens transparent epoxy composites[J]. Journal of Materials Chemistry C, 2017, 5(17): 4275-4285. [29] AMARO A, BERNARDO L, PINTO D, et al. The influence of curing agents in the impact properties of epoxy resin nanocomposites[J]. Composite Structures, 2017, 174(8): 26-32. [30] 顾晓燕, 高剑飞, 李惠翔. 聚酯纤维用于环氧树脂沥青混合料增柔及增韧技术研究[J]. 中外公路, 2022, 42(3): 247-250. GU X Y, GAO J F, LI H X. Study on technology of toughening and toughening of epoxy resin asphalt mixture with polyester fiber[J]. Journal of China & Foreign Highway, 2022, 42(3): 247-250 (in Chinese). [31] 张冲标, 高 博, 李运钱, 等. 玻纤增强环氧树脂力学与耐老化性能研究[J]. 浙江工业大学学报, 2024, 52(1): 100-104. ZHANG C B, GAO B, LI Y Q, et al. Study on mechanical and aging-resistant properties of glass fiber reinforced epoxy resin[J]. Journal of Zhejiang University of Technology, 2024, 52(1): 100-104 (in Chinese). |