[1] WANG C Y, YANG C P, ZHENG Z J. Toward practical high-energy and high-power lithium battery anodes: present and future[J]. Advanced Science, 2022, 9(9): e2105213. [2] BERCKMANS G, MESSAGIE M, SMEKENS J, et al. Cost projection of state of the art lithium-ion batteries for electric vehicles up to 2030[J]. Energies, 2017, 10(9): 1314. [3] ZHU B, WANG X Y, YAO P C, et al. Towards high energy density lithium battery anodes: silicon and lithium[J]. Chemical Science, 2019, 10(30): 7132-7148. [4] MAJEED M K, IQBAL R, HUSSAIN A, et al. Silicon-based anode materials for lithium batteries: recent progress, new trends, and future perspectives[J]. Critical Reviews in Solid State and Materials Sciences, 2024, 49(2): 221-253. [5] GE M Z, CAO C Y, BIESOLD G M, et al. Recent advances in silicon-based electrodes: from fundamental research toward practical applications[J]. Advanced Materials, 2021, 33(16): e2004577. [6] LUO J Y, ZHAO X, WU J S, et al. Crumpled graphene-encapsulated Si nanoparticles for lithium ion battery anodes[J]. The Journal of Physical Chemistry Letters, 2012, 3(13): 1824-1829. [7] ZHANG J M, TANG J J, ZHOU X Y, et al. Optimized porous Si/SiC composite spheres as high-performance anode material for lithium-ion batteries[J]. ChemElectroChem, 2019, 6(2): 450-455. [8] SALAH M, HALL C, FRANCIS C, et al. Binary silicon-based thin-film anodes for lithium-ion batteries: a review[J]. Journal of Power Sources, 2022, 520: 230871. [9] HE Z Y, XIAO Z X, YUE H J, et al. Single-walled carbon nanotube film as an efficient conductive network for Si-based anodes[J]. Advanced Functional Materials, 2023, 33(26): 2300094. [10] LI P, KIM H, MYUNG S T, et al. Diverting exploration of silicon anode into practical way: a review focused on silicon-graphite composite for lithium ion batteries[J]. Energy Storage Materials, 2021, 35: 550-576. [11] CABELLO M, GUCCIARDI E, HERRÁN A, et al. Towards a high-power Si@graphite anode for lithium ion batteries through a wet ball milling process[J]. Molecules, 2020, 25(11): 2494. [12] YANG H, LIN S Y, CHENG A, et al. Recent advances in ball-milling-based silicon anodes for lithium-ion batteries[J]. Energies, 2023, 16(7): 3099. [13] ZHAO Y, ZHANG L, LIU J, et al. Atomic/molecular layer deposition for energy storage and conversion[J]. Chemical Society Reviews, 2021, 50(6): 3889-3956. [14] GUPTA B, HOSSAIN M A, RIAZ A, et al. Recent advances in materials design using atomic layer deposition for energy applications[J]. Advanced Functional Materials, 2022, 32(3): 2109105. [15] LUO J, MA B J, PENG J, et al. Modified chestnut-like structure silicon carbon composite as anode material for lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(12): 10415-10424. [16] NGO D T, LE H T T, PHAM X M, et al. Facile synthesis of Si@SiC composite as an anode material for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(38): 32790-32800. [17] YU C H, CHEN X, XIAO Z X, et al. Silicon carbide as a protective layer to stabilize Si-based anodes by inhibiting chemical reactions[J]. Nano Letters, 2019, 19(8): 5124-5132. [18] FURQUAN M, JANGID M K, KHATRIBAIL A R, et al. Mechanical and electrochemical stability improvement of SiC-reinforced silicon-based composite anode for Li-ion batteries[J]. ACS Applied Energy Materials, 2020, 3(12): 12613-12626. [19] MA Z P, ZHU J P, ZENG F H, et al. Structural control and optimization schemes of silicon-based anode materials[J]. Energy Technology, 2023, 11(6): 2201496. [20] KHAN M I, SIDDIQUE R. Utilization of silica fume in concrete: review of durability properties[J]. Resources, Conservation and Recycling, 2011, 57: 30-35. [21] SIDDIQUE R. Utilization of silica fume in concrete: review of hardened properties[J]. Resources, Conservation and Recycling, 2011, 55(11): 923-932. [22] VIJAYAN D S, DEVARAJAN P, SIVASURIYAN A. A review on eminent application and performance of nano based silica and silica fume in the cement concrete[J]. Sustainable Energy Technologies and Assessments, 2023, 56: 103105. [23] ZHANG X H, QIU X Y, KONG D B, et al. Silicene flowers: a dual stabilized silicon building block for high-performance lithium battery anodes[J]. ACS Nano, 2017, 11(7): 7476-7484. [24] LIU Q, JI Y X, YIN X M, et al. Magnesiothermic reduction improved route to high-yield synthesis of interconnected porous Si@C networks anode of lithium ions batteries[J]. Energy Storage Materials, 2022, 46: 384-393. [25] DYE S, PHILLIPS D, WOODFORD D, et al. Gravimetric determination of free carbon and silicon carbide in silica fume[J]. Talanta, 1993, 40(6): 909-912. [26] FLETCHER A, PHILLIPS D, BARROW I. Determination of crystalline silica in silica fume[J]. Talanta, 1994, 41(10): 1663-1668. [27] BARATI M, SARDER S, MCLEAN A, et al. Recovery of silicon from silica fume[J]. Journal of Non Crystalline Solids, 2011, 357(1): 18-23. [28] DU J, ZHU R L, CHEN Q Z, et al. In situ synthesis of stable silicon carbide-reinforced silicon nanosheets from organoclay for high-performance lithium-ion battery anodes[J]. Applied Surface Science, 2023, 617: 156566. [29] HIMPSEL F J, MCFEELY F R, TALEB-IBRAHIMI A, et al. Microscopic structure of the SiO2/Si interface[J]. Physical Review B, Condensed Matter, 1988, 38(9): 6084-6096. [30] SHIMODA K, PARK J S, HINOKI T, et al. Influence of surface structure of SiC nano-sized powder analyzed by X-ray photoelectron spectroscopy on basic powder characteristics[J]. Applied Surface Science, 2007, 253(24): 9450-9456. [31] ÖNNEBY C, PANTANO C G. Silicon oxycarbide formation on SiC surfaces and at the SiC/SiO2 interface[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1997, 15(3): 1597-1602. [32] HIJIKATA Y, YAGUCHI H, YOSHIKAWA M, et al. Composition analysis of SiO2/SiC interfaces by electron spectroscopic measurements using slope-shaped oxide films[J]. Applied Surface Science, 2001, 184(1/2/3/4): 161-166. [33] NGUYEN T D, KELLY J A, HAMAD W Y, et al. Magnesiothermic reduction of thin films: towards semiconducting chiral nematic mesoporous silicon carbide and silicon structures[J]. Advanced Functional Materials, 2015, 25(14): 2175-2181. [34] SU J J, GAO B, CHEN Z D, et al. Large-scale synthesis and mechanism of β-SiC nanoparticles from rice husks by low-temperature magnesiothermic reduction[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(12): 6600-6607. [35] ENTWISTLE J, RENNIE A, PATWARDHAN S. A review of magnesiothermic reduction of silica to porous silicon for lithium-ion battery applications and beyond[J]. Journal of Materials Chemistry A, 2018, 6(38): 18344-18356. [36] GAO H Y, HU Z, ZHANG K, et al. Intergrown Li2FeSiO4·LiFePO4-C nanocomposites as high-capacity cathode materials for lithium-ion batteries[J]. Chemical Communications, 2013, 49(29): 3040-3042. [37] HU Z, ZHANG K, GAO H Y, et al. Li2MnSiO4@C nanocomposite as a high-capacity cathode material for Li-ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(40): 12650-12656. [38] DUAN W C, ZHU Z Q, LI H, et al. Na3V2(PO4)3@C core-shell nanocomposites for rechargeable sodium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(23): 8668-8675. [39] GAO H Y, JIAO L F, PENG W X, et al. Enhanced electrochemical performance of LiFePO4/C via Mo-doping at Fe site[J]. Electrochimica Acta, 2011, 56(27): 9961-9967. [40] YAO Y F, HE Z Y, XU X Y, et al. Upgraded lithium storage performance of defect-rich Si@C anode assisted by Fe2O3-induced pseudocapacitance[J]. Electrochimica Acta, 2023, 455: 142430. |