欢迎访问《硅酸盐通报》官方网站,今天是
分享到:

硅酸盐通报 ›› 2024, Vol. 43 ›› Issue (8): 3053-3062.

• 新型功能材料 • 上一篇    下一篇

硅灰制备硅/碳化硅纳米复合材料及其储锂性能研究

黄海铭1,2,3, 杜静1,2,3, 谢捷洋1,2,3, 陈情泽1,2,3, 朱润良1,2,3   

  1. 1.中国科学院广州地球化学研究所,中国科学院矿物学与成矿学重点实验室/广东省矿物物理与材料研究开发重点实验室,广州 510640;
    2.中国科学院深地科学卓越创新中心,广州 510640;
    3.中国科学院大学,北京 100049
  • 收稿日期:2024-01-15 修订日期:2024-04-10 出版日期:2024-08-15 发布日期:2024-08-12
  • 通信作者: 陈情泽,博士,副研究员。E-mail:chenqingze@gig.ac.cn
  • 作者简介:黄海铭(1999—),男,硕士研究生。主要从事锂离子电池硅负极材料的研究。E-mail:hhm15521185473@163.com
  • 基金资助:
    广东省重点领域研发计划(2020B0101370003);广东省自然科学基金杰出青年基金(2023B1515020006);中国科学院青年创新促进会(2020347);惠州市重点领域科技攻关“揭榜挂帅”项目;广东省科技计划(2023B1212060048)

Synthesis of Silicon/Silicon Carbide Nanocomposites from Silica Fume and Investigation of Its Lithium Storage Performance

HUANG Haiming1,2,3, DU Jing1,2,3, XIE Jieyang1,2,3, CHEN Qingze1,2,3, ZHU Runliang1,2,3   

  1. 1. CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China;
    2. CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China;
    3. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2024-01-15 Revised:2024-04-10 Online:2024-08-15 Published:2024-08-12

摘要: 硅负极的体积效应导致锂离子电池的循环寿命短且容量迅速衰减,如何提高硅负极材料的循环稳定性至关重要。采用了熔盐辅助镁热还原法,通过使用含有单质碳的工业固体废弃物硅灰,成功设计了一种碳化硅增强的硅纳米材料(SF-Si),所制备的SF-Si样品不仅保留了SF本身存在的SiC,还将单质碳转化为SiC,使样品中的SiC含量达到了16.4%(质量分数)。与经过热处理去除单质碳的硅灰制备的硅材料(H-SF-Si)相比,SF-Si负极材料表现出更好的循环性能和倍率性能,即第1圈2 584.76 mAh·g-1的高比容量和第100圈时具有83%的容量保持率,并且在高电流密度5 A·g-1下的平均容量仍为877.28 mAh·g-1,这主要归因于更高的SiC含量。研究表明,硅灰在锂离子电池硅负极领域具有应用潜力,其碳元素在制备硅基纳米材料时发挥积极的作用。

关键词: 硅/碳化硅纳米复合材料, 硅灰, 镁热还原, 锂离子电池, 负极材料, 工业固体废弃物

Abstract: The volumetric expansion of silicon anodes in lithium-ion batteries leads to a shortened cycling life and rapid capacity decay. Consequently, it is imperative to enhance the cyclic stability of silicon anode materials. In this study, we employed a molten salt-assisted magnesiothermic reduction method and successfully devised a silicon nanomaterial reinforced with silicon carbide (SF-Si) by utilizing silica fume containing elemental carbon, which is an industrial solid waste. The resulting SF-Si sample not only retained the SiC present in the silica fume but also converted the elemental carbon into SiC, achieving a SiC content of 16.4% (mass fraction). Comparative analysis with silicon material prepared from heat-treated silica fume without elemental carbon removal (H-SF-Si) revealed that SF-Si exhibited superior cyclic and rate performance. It attained a high specific capacity of 2 584.76 mAh·g-1 in the first cycle, maintained an 83% capacity retention after 100 cycles, and even at a high current density of 5 A·g-1, the average capacity remained at 877.28 mAh·g-1. These enhancements were primarily attributed to the higher SiC content. The study underscores the potential application of silica fume in the domain of silicon anodes for lithium-ion batteries, with its carbon element playing a constructive role in the preparation of silicon-based nanomaterials.

Key words: silicon/silicon carbide nanocomposite, silica fume, magnesiothermic reduction, lithium-ion battery, anode material, industrial solid waste

中图分类号: