[1] SHOJI D, HE Z, ZHANG D, et al. The greening of engineered cementitious composites (ECC): a review[J]. Construction and Building Materials, 2022, 327: 126701. [2] 张 敏, 邓明科, 智奥龙, 等. 纤维织物增强高延性混凝土加固RC梁的受弯性能[J]. 浙江大学学报(工学版), 2022, 56(9): 1693-1703. ZHANG M, DENG M K, ZHI A L, et al. Flexural behavior of RC beams strengthened by textile-reinforced highly ductile concrete[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(9): 1693-1703 (in Chinese). [3] DA S, LE BILLON P. Sand mining: stopping the grind of unregulated supply chains[J]. The Extractive Industries and Society, 2022, 10: 101070. [4] UMAR U A, SHAFIQ N, AHMAD F A. A case study on the effective implementation of the reuse and recycling of construction & demolition waste management practices in Malaysia[J]. Ain Shams Engineering Journal, 2021, 12(1): 283-291. [5] 杨军强, 孙 欣. 建筑垃圾再生骨料工程特性分析[J]. 施工技术, 2022, 51(16): 105-109. YANG J Q, SUN X. Analysis on engineering characteristics of construction waste recycled aggregate[J]. Construction Technology, 2022, 51(16): 105-109 (in Chinese). [6] 王建刚, 曾 波, 唐 飞, 等. 不同类型再生细骨料混凝土力学性能对比研究[J]. 混凝土, 2022(4): 81-85. WANG J G, ZENG B, TANG F, et al. Comparative study on mechanical properties of concrete with different types of recycled fine aggregate[J]. Concrete, 2022(4): 81-85 (in Chinese). [7] LI J X, YANG E H. Macroscopic and microstructural properties of engineered cementitious composites incorporating recycled concrete fines[J]. Cement and Concrete Composites, 2017, 78: 33-42. [8] ZHANG H R, JI T, ZENG X P, et al. Mechanical behavior of ultra-high performance concrete (UHPC) using recycled fine aggregate cured under different conditions and the mechanism based on integrated microstructural parameters[J]. Construction and Building Materials, 2018, 192: 489-507. [9] BAI M Y, WU Y, XIAO J Z, et al. Workability and hardened properties of 3D printed engineered cementitious composites incorporating recycled sand and PE fibers[J]. Journal of Building Engineering, 2023, 71: 106477. [10] ZHOU Y W, GONG G Q, HUANG Y J, et al. Feasibility of incorporating recycled fine aggregate in high performance green lightweight engineered cementitious composites[J]. Journal of Cleaner Production, 2021, 280: 124445. [11] EVANGELISTA L, DE BRITO J. Durability performance of concrete made with fine recycled concrete aggregates[J]. Cement and Concrete Composites, 2010, 32(1): 9-14. [12] POON C S, QIAO X C, CHAN D. The cause and influence of self-cementing properties of fine recycled concrete aggregates on the properties of unbound sub-base[J]. Waste Management, 2006, 26(10): 1166-1172. [13] LEVY S M, HELENE P. Durability of recycled aggregates concrete: a safe way to sustainable development[J]. Cement and Concrete Research, 2004, 34(11): 1975-1980. [14] 中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019. Ministry of Housing and Urban-Rural Development of the People’s Republic of China, State Administration for Market Supervision and Administration. Standards for test methods of physical and mechanical properties of concrete: GB/T 50081—2019[S]. Beijing: China Construction Industry Publishing House, 2019 (in Chinese). [15] YOKOTA H, ROKUGO K, SAKATA N. Recommendations for design and construction of high-performance fiber reinforced cement composites with multiple fine cracks[S]. Tokyo: Japan Society of Civil Engineers, 2008. [16] 中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009. Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for test methods of long-term performance and durability of ordinary concrete: GB/T 50082—2009[S]. Beijing: China Construction Industry Press, 2009 (in Chinese). [17] 魏 涛, 全晓旖, 闫强强, 等. 高延性铁尾矿砂再生混凝土力学性能试验研究[J]. 混凝土与水泥制品, 2019(8): 93-96. WEI T, QUAN X Y, YAN Q Q, et al. Experimental study on mechanical performance of ductile iron tailings RAC[J]. China Concrete and Cement Products, 2019(8): 93-96 (in Chinese). [18] CHENG Z Q, YAN W H, SUI Z B, et al. Effect of fiber content on the mechanical properties of engineered cementitious composites with recycled fine aggregate from clay brick[J]. Materials, 2021, 14(12): 3272. [19] LANGE-KORNBAK D, KARIHALOO B L. Tension softening of fibre-reinforced cementitious composites[J]. Cement and Concrete Composites, 1997, 19(4): 315-328. [20] 张 鸿, 宋迎东. 陶瓷基复合材料基体裂纹偏转能量释放率研究[J]. 航空动力学报, 2007, 22(10): 1730-1736. ZHANG H, SONG Y D. Study of energy release rates for crack deflection of ceramic matrix composites[J]. Journal of Aerospace Power, 2007, 22(10): 1730-1736 (in Chinese). [21] GAO D Y, LV M Y, YANG L, et al. Experimental study of utilizing recycled fine aggregate for the preparation of high ductility cementitious composites[J]. Materials, 2020, 13(3): 679. [22] KIRTHIKA S K, SINGH S K. Durability studies on recycled fine aggregate concrete[J]. Construction and Building Materials, 2020, 250: 118850. [23] LONDHE S N, KULKARNI P S, DIXIT P R, et al. Predicting carbonation coefficient using Artificial neural networks and genetic programming[J]. Journal of Building Engineering, 2021, 39: 102258. [24] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2011. Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of concrete structures: GB 50010—2010[S]. Beijing: China Construction Industry Press, 2011 (in Chinese). [25] LYU Z H, SHEN A Q, MO S X, et al. Life-cycle crack resistance and micro characteristics of internally cured concrete with superabsorbent polymers[J]. Construction and Building Materials, 2020, 259: 119794. [26] ZHU X Y, YUAN Y, LI L H, et al. Identification of interfacial transition zone in asphalt concrete based on nano-scale metrology techniques[J]. Materials & Design, 2017, 129: 91-102. |