[1] 韩同银, 杜命刚, 尚艳亮, 等. 产业化趋势下装配式建筑发展策略研究[J]. 铁道工程学报, 2020, 37(7): 106-112. HAN T Y, DU M G, SHANG Y L, et al. Research on the development strategy of prefabricated construction under industrialization trend[J]. Journal of Railway Engineering Society, 2020, 37(7): 106-112 (in Chinese). [2] 张云升, 张文华, 陈振宇. 综论超高性能混凝土: 设计制备·微观结构·力学与耐久性·工程应用[J]. 材料导报, 2017, 31(23): 1-16. ZHANG Y S, ZHANG W H, CHEN Z Y. A complete review of ultra-high performance concrete: design and preparation, microstructure, mechanics and durability, engineering applications[J]. Materials Review, 2017, 31(23): 1-16 (in Chinese). [3] 中国混凝土与水泥制品协会超高性能水泥基材料与工程技术(CCPA-UHPC)分会. 2022年中国超高性能混凝土(UHPC)技术与应用发展报告(上)[J]. 混凝土世界, 2023(7): 19-27 China Concrete and Cement Products Association Ultra High Performance Cementitious Materials and Engineering Technology (CCPA-UHPC) Branch. 2022 China ultra high performance concrete (UHPC) technology and application development report (part 1)[J]. Concrete World, 2023(7): 19-27 (in Chinese). [4] 刘加平, 刘建忠, 韩方玉, 等. 基于钢-混凝土组合结构轻量化的粗骨料超高性能混凝土研究进展与应用[J]. 建筑结构学报, 2022, 43(9): 36-44. LIU J P, LIU J Z, HAN F Y, et al. Research progress and application of coarse aggregate ultra high performance concrete used for lightweight steel-concrete composite structure[J]. Journal of Building Structures, 2022, 43(9): 36-44 (in Chinese). [5] 夏 嵩, 陈 柳, 杨 旭. 超高性能混凝土(UHPC)在桥面板体系中的应用2020年度研究进展[J]. 土木与环境工程学报(中英文), 2021, 43(增刊1): 175-184. XIA S, CHEN L, YANG X. Application of ultra high performance concrete (UHPC) in bridge deck system: research progress in 2020[J]. Journal of Civil and Environmental Engineering, 2021, 43(supplement 1): 175-184 (in Chinese). [6] ZHU Z G, LI B X, LIU J C, et al. Effects of curing systems on the strength and microstructure of reactive powder concrete with iron tailing sands[J]. Applied Mechanics and Materials, 2014, 548/549: 247-253. [7] ZANNI H, CHEYREZY M, MARET V, et al. Investigation of hydration and pozzolanic reaction in reactive powder concrete (RPC) using 29Si NMR[J]. Cement and Concrete Research, 1996, 26(1): 93-100. [8] SHEN P L, LU L N, HE Y J, et al. Experimental investigation on the autogenous shrinkage of steam cured ultra-high performance concrete[J]. Construction and Building Materials, 2018, 162: 512-522. [9] 孙嘉伦, 张春晓, 毛继泽, 等. 养护制度对超高性能混凝土强度的影响机理研究[J]. 材料导报, 2024, 38(18): 23050059. SUN J L, ZHANG C X, MAO J Z, et al. Effects of curing regimes on the strength of ultra-high performance concrete and affecting mechanism[J]. Materials Reports, 2024, 38(18): 23050059. (in Chinese). [10] SHEN P L, LU L N, HE Y J, et al. The effect of curing regimes on the mechanical properties, nano-mechanical properties and microstructure of ultra-high performance concrete[J]. Cement and Concrete Research, 2019, 118: 1-13. [11] WU Z M, SHI C J, HE W. Comparative study on flexural properties of ultra-high performance concrete with supplementary cementitious materials under different curing regimes[J]. Construction and Building Materials, 2017, 136: 307-313. [12] 吴建东, 郭丽萍, 曹园章, 等. 蒸汽养护制度对超高性能混凝土早期力学性能及微观结构的影响[J]. 东南大学学报(自然科学版), 2022, 52(4): 744-752. WU J D, GUO L P, CAO Y Z, et al. Effect of steam curing system on the early mechanical property and microstructure of ultra-high performance concrete[J]. Journal of Southeast University (Natural Science Edition), 2022, 52(4): 744-752 (in Chinese). [13] LIU C J, CHEN F L, DENG X W, et al. Comparison of nano-silica-modified manufactured-sand concrete under steam curing and standard curing[J]. Journal of Building Engineering, 2023, 72: 106443. [14] KANCHANASON V, PLANK J. Effect of calcium silicate hydrate-polycarboxylate ether (C-S-H-PCE) nanocomposite as accelerating admixture on early strength enhancement of slag and calcined clay blended cements[J]. Cement and Concrete Research, 2019, 119: 44-50. [15] FU H, TIAN L, WANG P G, et al. Microstructure, deformation and durability of high-strength non-steam-cured concrete with C-S-H seed[J]. Construction and Building Materials, 2023, 374: 130953. [16] JOHN E, MATSCHEI T, STEPHAN D. Nucleation seeding with calcium silicate hydrate-A review[J]. Cement and Concrete Research, 2018, 113: 74-85. [18] 唐芮枫, 张佳乐, 王子明, 等. C-S-H纳米晶种及其对水泥水化硬化的促进作用综述[J]. 材料导报, 2023, 37(9): 109-124. TANG R F, ZHANG J L, WANG Z M, et al. C-S-H nano-seed and its promoting effect on cement hydration and hardening: a review[J]. Materials Reports, 2023, 37(9): 109-124 (in Chinese). [19] 张朝阳, 蔡 熠, 孔祥明, 等. 纳米C-S-H对水泥水化、硬化浆体孔结构及混凝土强度的影响[J]. 硅酸盐学报, 2019, 47(5): 585-593. ZHANG C Y, CAI Y, KONG X M, et al. Influence of nano C-S-H on cement hydration, pore structure of hardened cement pastes and strength of concrete[J]. Journal of the Chinese Ceramic Society, 2019, 47(5): 585-593 (in Chinese). [20] ZHANG J L, WANG Z M, YAO Y H, et al. The effect and mechanism of C-S-H-PCE nanocomposites on the early strength of mortar under different water-to-cement ratio[J]. Journal of Building Engineering, 2021, 44: 103360. [21] HE W, LIAO G. Investigation of the early-age performance and microstructure of nano-C-S-H blended cement-based materials[J]. Nanotechnology Reviews, 2021, 10(1): 1374-1382. [22] 王鹏刚, 付 华, 李格格, 等. 纳米C-S-H-PCE对沿海地铁管片用C50免蒸养混凝土性能的影响[J]. 东南大学学报(自然科学版), 2022, 52(2): 254-262. WANG P G, FU H, LI G G, et al. Effects of Nano-C-S-H-PCE on performance of C50 non-steam cured concrete for coastal subway segment[J]. Journal of Southeast University (Natural Science Edition), 2022, 52(2): 254-262 (in Chinese). [23] XU C, LI H X, YANG X J. Effect and characterization of the nucleation C-S-H seed on the reactivity of granulated blast furnace slag powder[J]. Construction and Building Materials, 2020, 238: 117726. [24] WANG F, KONG X M, JIANG L F, et al. The acceleration mechanism of nano-C-S-H particles on OPC hydration[J]. Construction and Building Materials, 2020, 249: 118734. [25] 徐智东, 梅军鹏, 王智鑫, 等. 纳米C-S-H对矿粉-水泥体系水化的影响[J]. 硅酸盐通报, 2022, 41(1): 13-19. XU Z D, MEI J P, WANG Z X, et al. Effect of nano C-S-H on hydration of slag powder-cement system[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(1): 13-19 (in Chinese). |