[1] WANG G S, MA Y W. Drying shrinkage of alkali-activated fly ash/slag blended system[J]. Journal of Sustainable Cement-Based Materials, 2018, 7(4): 203-213. [2] LUUKKONEN T, ABDOLLAHNEJAD Z, YLINIEMI J, et al. One-part alkali-activated materials: a review[J]. Cement and Concrete Research, 2018, 103: 21-34. [3] 余春松, 张玲玲, 郑大伟, 等. 固废基地质聚合物的研究及其应用进展[J]. 中国科学(技术科学), 2022, 52(4): 529-546. YU C S, ZHANG L L, ZHENG D W, et al. Research progress of geopolymer materials prepared from solid waste and their applications[J]. Scientia Sinica (Technologica), 2022, 52(4): 529-546 (in Chinese). [4] ZHANG B, ZHU H, CHENG Y Z, et al. Shrinkage mechanisms and shrinkage-mitigating strategies of alkali-activated slag composites: a critical review[J]. Construction and Building Materials, 2022, 318: 125993. [5] 迟凤霞, 韩 博, 程沁灵, 等. 激发剂内部参数对碱激发注浆材料性能的影响[J]. 硅酸盐通报, 2021, 40(5): 1751-1759. CHI F X, HAN B, CHENG Q L, et al. Effect of internal parameters of activator on performance of alkali-activated grouting material[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(5): 1751-1759 (in Chinese). [6] LI Z M, DELSAUTE B, LU T S, et al. A comparative study on the mechanical properties, autogenous shrinkage and cracking proneness of alkali-activated concrete and ordinary Portland cement concrete[J]. Construction and Building Materials, 2021, 292: 123418. [7] LI Z M, LU T S, CHEN Y, et al. Prediction of the autogenous shrinkage and microcracking of alkali-activated slag and fly ash concrete[J]. Cement and Concrete Composites, 2021, 117: 103913. [8] 赵人达, 王永宝, 原 元, 等. 地聚物混凝土收缩研究综述[J]. 硅酸盐通报, 2020, 39(6): 1695-1702. ZHAO R D, WANG Y B, YUAN Y, et al. Review on shrinkage of geopolymer concrete[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(6): 1695-1702 (in Chinese). [9] BÍLEK V, KALINA L, NOVOTNÝ R. Polyethylene glycol molecular weight as an important parameter affecting drying shrinkage and hydration of alkali-activated slag mortars and pastes[J]. Construction and Building Materials, 2018, 166: 564-571. [10] YE H L, FU C Q, LEI A K. Mitigating shrinkage of alkali-activated slag by polypropylene glycol with different molecular weights[J]. Construction and Building Materials, 2020, 245: 118478. [11] YE H L, RADLIŃSKA A. Shrinkage mitigation strategies in alkali-activated slag[J]. Cement and Concrete Research, 2017, 101: 131-143. [12] 王爱国, 郑 毅, 张祖华, 等. 地聚物胶凝材料改性提高混凝土耐久性的研究进展[J]. 材料导报, 2019, 33(15): 2552-2560. WANG A G, ZHENG Y, ZHANG Z H, et al. Research progress of geopolymer cementitious material modification for improving durability of concrete[J]. Materials Reports, 2019, 33(15): 2552-2560 (in Chinese). [13] BALLEKERE KUMARAPPA D, PEETHAMPARAN S, NGAMI M. Autogenous shrinkage of alkali activated slag mortars: basic mechanisms and mitigation methods[J]. Cement and Concrete Research, 2018, 109: 1-9. [14] MATALKAH F, SALEM T, SHAAFAEY M, et al. Drying shrinkage of alkali activated binders cured at room temperature[J]. Construction and Building Materials, 2019, 201: 563-570. [15] BERNAL S A. Advances in near-neutral salts activation of blast furnace slags[J]. RILEM Technical Letters, 2016, 1: 39-44. [16] 王 珏, 石启福, 周骏宏, 等. 亚磷酸镁制备初步研究[J]. 无机盐工业, 2020, 52(6): 50-53. WANG J, SHI Q F, ZHOU J H, et al. Preliminary study on preparation of magnesium phosphite[J]. Inorganic Chemicals Industry, 2020, 52(6): 50-53 (in Chinese). [17] RAJABIPOUR F, SANT G, WEISS J. Interactions between shrinkage reducing admixtures (SRA) and cement paste’s pore solution[J]. Cement and Concrete Research, 2008, 38(5): 606-615. [18] BEN HAHA M, LOTHENBACH B, LE SAOUT G, et al. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—part II: effect of Al2O3[J]. Cement and Concrete Research, 2012, 42(1): 74-83. [19] PARK S, PARK H M, YOON H N, et al. Hydration kinetics and products of MgO-activated blast furnace slag[J]. Construction and Building Materials, 2020, 249: 118700. [20] ATHIRA V S, BAHURUDEEN A, SALJAS M, et al. Influence of different curing methods on mechanical and durability properties of alkali activated binders[J]. Construction and Building Materials, 2021, 299: 123963. [21] 张文艳, 林华夏, 王 帅, 等. 减缩剂对碱激发煤矸石-矿渣胶凝材料性能的影响[J]. 硅酸盐通报, 2022, 41(2): 526-535. ZHANG W Y, LIN H X, WANG S, et al. Effect of shrinkage reducing agent on properties of alkali-activated coal gangue-slag cementitious material[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(2): 526-535 (in Chinese). [22] PALACIOS M, PUERTAS F. Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes[J]. Cement and Concrete Research, 2007, 37(5): 691-702. [23] YE H L, RADLIŃSKA A. Shrinkage mechanisms of alkali-activated slag[J]. Cement and Concrete Research, 2016, 88: 126-135. [24] QU Z Y, YU Q L, JI Y D, et al. Mitigating shrinkage of alkali activated slag with biofilm[J]. Cement and Concrete Research, 2020, 138: 106234. |