[1] 李玉松, 张生栋, 鲜 亮, 等. CIAE高放废液固化技术研发进展[J]. 原子能科学技术, 2020, 54(增刊1): 126-136. LI Y S, ZHANG S D, XIAN L, et al. Research and development progress of solidification technology of CIAE high-level radioactive waste liquid[J]. Atomic Energy Science and Technology, 2020, 54(supplement 1): 126-136 (in Chinese). [2] 王孝强. 高硫高钠高放废液的玻璃固化配方研究[D]. 成都: 成都理工大学, 2013. WANG X Q. Studies of high-sufur, high-sodium, high radioactivity liquid waste vitrification formulation[D]. Chengdu: Chengdu University of Technology, 2013 (in Chinese). [3] MANARA D, GRANDJEAN A, PINET O, et al. Sulfur behavior in silicate glasses and melts: implications for sulfate incorporation in nuclear waste glasses as a function of alkali cation and V2O5 content[J]. Journal of Non-Crystalline Solids, 2007, 353(1): 12-23. [4] 邵辅义, 严家德, 张宝善, 等. 含硫酸盐模拟高放废液罐式法玻璃固化中间装置中硫的分布[J]. 原子能科学技术, 1990, 24(4): 58-65. SHAO F Y, YAN J D, ZHANG B S, et al. Sulfate distribution in the pot type facility for vitrification of simulated sulfate containing HLW[J]. Atomic Energy Science and Technology, 1990, 24(4): 58-65 (in Chinese). [5] 徐 凯. 核废料玻璃固化国际研究进展[J]. 中国材料进展, 2016, 35(7): 481-488+517. XU K. Review of international research progress on nuclear waste vitrification[J]. Materials China, 2016, 35(7): 481-488+517 (in Chinese). [6] KAUSHIK C P, MISHRA R K, SENGUPTA P, et al. Barium borosilicate glass: a potential matrix for immobilization of sulfate bearing high-level radioactive liquid waste[J]. Journal of Nuclear Materials, 2006, 358(2/3): 129-138. [7] XU X Y, YOUNGMAN R E, KAPOOR S, et al. Structural drivers controlling sulfur solubility in alkali aluminoborosilicate glasses[J]. Journal of the American Ceramic Society, 2021, 104(10): 5030-5049. [8] SAINI R, KAPOOR S, NEUVILLE D R, et al. Correlating sulfur solubility with short-to-intermediate range ordering in the structure of borosilicate glasses[J]. The Journal of Physical Chemistry C, 2022, 126(1): 655-674. [9] 刘丽君, 徐建华, 姜耀中. 玻璃固化过程中硫酸盐分相和分解行为研究[J]. 原子能科学技术, 2015, 49(9): 1551-1556. LIU L J, XU J H, JIANG Y Z. Study on sulfate phase segregation and decomposition in vitrification process[J]. Atomic Energy Science and Technology, 2015, 49(9): 1551-1556 (in Chinese). [10] WU L, XU L G, JIANG F, et al. Microstructure, sulfate retention, and aqueous stability of barite-borosilicate glass-ceramics[J]. Journal of Nuclear Materials, 2019, 516: 152-159. [11] LEI J, WANG B, XU L G, et al. Role of Ba(NO3) pretreatment in reducing the yellow phase formation during vitrification of nuclear waste[J]. Journal of Nuclear Materials, 2021, 555: 153121. [12] ASTM C1285-14. Standard test methods for determining chemical durability of nuclear, hazardous, and mixed waste glasses and multiphase glass ceramics: the product consistency test (PCT)[S]. ASTM International, Waste Conshohocken, PA, 2014. [13] LEE A C, LEE S K. Network polymerization and cation coordination environments in boron-bearing rhyolitic melts: insights from 17O, 11B, and 27Al solid-state NMR of sodium aluminoborosilicate glasses with varying boron content[J]. Geochimica et Cosmochimica Acta, 2020, 268: 325-347. [14] WU J S, STEBBINS J F. Effects of cation field strength on the structure of aluminoborosilicate glasses: high-resolution 11B, 27Al and 23Na MAS NMR[J]. Journal of Non-Crystalline Solids, 2009, 355(9): 556-562. [15] GIN S, JOLLIVET P, FOURNIER M, et al. Origin and consequences of silicate glass passivation by surface layers[J]. Nature Communications, 2015, 6: 6360. |