硅酸盐通报 ›› 2024, Vol. 43 ›› Issue (6): 2225-2240.
董新保1, 任意2, 汪洋1, 刘福田1
收稿日期:
2023-10-30
修订日期:
2024-01-12
出版日期:
2024-06-15
发布日期:
2024-06-18
通信作者:
汪 洋,博士,讲师。E-mail:mse_wangy2023@ujn.edu.cn;刘福田,博士,教授。E-mail:mse_liuft@ujn.edu.cn
作者简介:
董新保(1998—),男,硕士研究生。主要从事碳化硅陶瓷方面的研究。E-mail:d488821093@163.com
基金资助:
DONG Xinbao1, REN Yi2, WANG Yang1, LIU Futian1
Received:
2023-10-30
Revised:
2024-01-12
Online:
2024-06-15
Published:
2024-06-18
摘要: 随着国际形势不断变化,各国冲突加剧,国防力量的提升是保证国家稳定发展的必要条件,防弹装甲是其中的关键一环。无压烧结碳化硅陶瓷由于制备工艺简单,具有低密度、高硬度、高强度等特性,被广泛应用于防弹装甲领域,其硬度和断裂韧性的高低直接决定防弹性能的优劣。促进烧结致密化以及多相复合烧结等方式是提高无压烧结碳化硅陶瓷硬度和断裂韧性的关键。本文针对无压烧结碳化硅防弹陶瓷材料的烧结助剂、增韧方式、陶瓷装甲的复合形式等方面,总结了近年来无压烧结碳化硅防弹陶瓷材料的研究进展。
中图分类号:
董新保, 任意, 汪洋, 刘福田. 无压烧结碳化硅防弹陶瓷材料研究进展[J]. 硅酸盐通报, 2024, 43(6): 2225-2240.
DONG Xinbao, REN Yi, WANG Yang, LIU Futian. Research Progress of Pressureless Sintered Silicon Carbide Bulletproof Ceramic Materials[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2225-2240.
[1] 汪 涵, 尹珑龙, 郭 晴, 等. 纳米碳化硅的制备与应用研究进展[J]. 广东化工, 2022, 49(8): 84-86+108. WANG H, YIN L L, GUO Q, et al. Research prospects of application and preparation of nano-silcon carbon[J]. Guangdong Chemical Industry, 2022, 49(8): 84-86+108 (in Chinese). [2] 曹团结, 陆国龙, 宋华磊, 等. 碳化硅作为导热材料在橡胶中的应用[J]. 橡胶科技, 2022, 20(3): 126-130. CAO T J, LU G L, SONG H L, et al. Application of silicon carbide as thermal conductive material in rubber[J]. Rubber Science and Technology, 2022, 20(3): 126-130 (in Chinese). [3] 宋德升, 张 彪, 朱振坤. 碳化硅高温换热器的研制及应用[J]. 工业炉, 2021, 43(4): 48-52. SONG D S, ZHANG B, ZHU Z K. Development and application of SiC high temperature heat exchanger[J]. Industrial Furnace, 2021, 43(4): 48-52 (in Chinese). [4] 曹宇翔, 张 潇, 王少宁, 等. 碳化硅功率器件在宇航电源中的研究与应用[J]. 电子设计工程, 2023, 31(9): 7-12. CAO Y X, ZHANG X, WANG S N, et al. Research and application of silicon carbide power devices in aerospace power supply[J]. Electronic Design Engineering, 2023, 31(9): 7-12 (in Chinese). [5] 都兴红, 仇 知, 郭静霓, 等. 碳化硅的应用现状及展望[C]. 洛阳: 第十七届全国耐火材料青年学术报告会论文集. 2020: 3. DU X H, QIU Z, GUO J N et al. Application status and prospect of silicon carbide[C]. Luoyang: Proceedings of the 17th National Refractory Youth Academic Report. 2020: 3 (in Chinese). [6] 罗 娟, 杨科伟, 王 萌, 等. 防弹陶瓷的烧结工艺及发展现状[J]. 陶瓷, 2020(9): 24-27. LUO J, YANG K W, WANG M, et al. Sintering process and development status of bulletproof ceramics[J]. Ceramics, 2020(9): 24-27 (in Chinese). [7] 李辰冉, 谢志鹏, 赵 林. 碳化硅陶瓷材料烧结技术的研究与应用进展[J]. 陶瓷学报, 2020, 41(2): 137-149. LI C R, XIE Z P, ZHAO L. Research and application of sintering technologies for SiC ceramic materials: a review[J]. Journal of Ceramics, 2020, 41(2): 137-149 (in Chinese). [8] 刘海林. 碳化硅陶瓷研究[J]. 中国建材, 2015, 64(6): 84-87. LIU H L. Study on silicon carbide ceramics[J]. China Building Materials, 2015, 64(6): 84-87 (in Chinese). [9] KHODAEI M, YAGHOBIZADEH O, BAHARVANDI H R, et al. Effects of different sintering methods on the properties of SiC-TiC, SiC-TiB2 composites[J]. International Journal of Refractory Metals and Hard Materials, 2018, 70: 19-31. [10] 王晓波, 贺智勇, 王 峰, 等. 复杂结构碳化硅陶瓷制备工艺的研究进展[J]. 机械工程材料, 2021, 45(7): 1-6+34. WANG X B, HE Z Y, WANG F, et al. Research progress on preparation technology of silicon carbide ceramics with complex structure[J]. Materials for Mechanical Engineering, 2021, 45(7): 1-6+34 (in Chinese). [11] 张文毓. 装甲防护陶瓷材料的研究与应用[J]. 陶瓷, 2020(8): 16-20. ZHANG W Y. Research and application of armor protection ceramic materials[J]. Ceramics, 2020(8): 16-20 (in Chinese). [12] XIE Y, WANG T, WANG L M, et al. Numerical investigation of ballistic performance of SiC/TC4/UHMWPE composite armor against 7.62 mm AP projectile[J]. Ceramics International, 2022, 48(16): 24079-24090. [13] 鹿桂花, 朱丹丹, 周恒为. 助烧剂对无压液相烧结碳化硅陶瓷性能的影响[J]. 伊犁师范学院学报(自然科学版), 2019, 13(2): 25-32. LU G H, ZHU D D, ZHOU H W. Effect of sintering aid on properties of silicon carbide ceramics by pressureless liquid phase sintering[J]. Journal of Yili Normal University (Natural Science Edition), 2019, 13(2): 25-32 (in Chinese). [14] 李柏顺. 碳化硅的常压烧结及其熔盐侵蚀行为[D]. 沈阳: 东北大学, 2009. LI B S. Atmospheric pressure sintering of silicon carbide and its molten salt erosion behavior[D]. Shenyang: Northeastern University, 2009 (in Chinese). [15] PROCHAZKA S. Sintering of silicon carbide[M]//COOPER AR, HEUER AH. Mass Transport Phenomena in Ceramics. Boston, MA: Springer, 1975: 421-431. [16] LIU M, YANG Y, WEI Y Q, et al. Preparation of dense and high-purity SiC ceramics by pressureless solid-state-sintering[J]. Ceramics International, 2019, 45(16): 19771-19776. [17] ZHU Y, LUO D J, LI Z J, et al. Effect of sintering temperature on the mechanical properties and microstructures of pressureless-sintered B4C/SiC ceramic composite with carbon additive[J]. Journal of Alloys and Compounds, 2020, 820: 153153. [18] DATTA M S, BANDYOPADHYAY A K, CHAUDHURI B. Sintering of nano crystalline α silicon carbide by doping with boron carbide[J]. Bulletin of Materials Science, 2002, 25(3): 181-189. [19] 邢媛媛, 吴海波, 刘学建, 等. 颗粒级配对固相烧结碳化硅陶瓷的影响[J]. 无机材料学报, 2018, 33(11): 1167-1172. XING Y Y, WU H B, LIU X J, et al. Grain composition on solid-state-sintered SiC ceramics[J]. Journal of Inorganic Materials, 2018, 33(11): 1167-1172 (in Chinese). [20] ZHU Y, WANG F C, WANG Y W, et al. Mechanical properties and microstructure evolution of pressureless-sintered B4C-SiC ceramic composite with CeO2 additive[J]. Ceramics International, 2019, 45(12): 15108-15115. [21] GUSTAFSSON S, FALK L K L, LIDÉN E, et al. Pressureless sintered Al2O3-SiC nanocomposites[J]. Ceramics International, 2008, 34(7): 1609-1615. [22] GERMAN R M, SURI P, PARK S J. Liquid phase sintering[J]. Journal of Materials Science, 2009, 44: 1-39. [23] LIANG H Q, YAO X M, ZHANG H, et al. In situ toughening of pressureless liquid phase sintered α-SiC by using TiO2[J]. Ceramics International, 2014, 40(7): 10699-10704. [24] BUCEVAC D, BOSKOVIC S, MATOVIC B, et al. Toughening of SiC matrix with in-situ created TiB2 particles[J]. Ceramics International, 2010, 36(7): 2181-2188. [25] KIM K J, EOM J H, KIM Y W, et al. Highly resistive SiC ceramics sintered with Al2O3-AlN-Y2O3 additions[J]. Ceramics International, 2017, 43(6): 5343-5346. [26] GUO X Z, YANG H, ZHU X Y, et al. Preparation and properties of nano-SiC-based ceramic composites containing nano-TiN[J]. Scripta Materialia, 2013, 68(5): 281-284. [27] GUBERNAT A, STOBIERSKI L, ŁABAJ P. Microstructure and mechanical properties of silicon carbide pressureless sintered with oxide additives[J]. Journal of the European Ceramic Society, 2007, 27(2/3): 781-789. [28] EOM J H, SEO Y K, KIM Y W. Mechanical and thermal properties of pressureless sintered silicon carbide ceramics with alumina-yttria-calcia[J]. Journal of the American Ceramic Society, 2016, 99(5): 1735-1741. [29] ZAWRAH M F, SHAW L. Liquid-phase sintering of SiC in presence of CaO[J]. Ceramics International, 2004, 30(5): 721-725. [30] KHODAEI M, YAGHOBIZADEH O, EHSANI N, et al. The effect of TiO2 additive on sinterability and properties of SiC-Al2O3-Y2O3 composite system[J]. Ceramics International, 2018, 44(14): 16535-16542. [31] AHMOYE D, BUCEVAC D, KRSTIC V D. Mechanical properties of reaction sintered SiC-TiC composite[J]. Ceramics International, 2018, 44(12): 14401-14407. [32] GUO W L, JIN Z G, XU T X, et al. Low-temperature pressureless sintering of SiC ceramics with Al2O3-Y2O3-La2O3 addition[J]. Key Engineering Materials, 2002, 224/225/226: 725-728. [33] LEE J Y, HINOKI T. Densification behavior of monolithic SiC fabricated by pressureless liquid phase sintering method[J]. Open Ceramics, 2022, 11: 100289. [34] LIANG H Q, YAO X M, ZHANG H, et al. The effect of TiC on the liquid phase sintering of SiC ceramics with Al2O3 and Y2O3 additives[J]. Key Engineering Materials, 2014, 602/603: 197-201. [35] KIM Y W, LEE S G, LEE Y I. Pressureless sintering of SiC-TiC composites with improved fracture toughness[J]. Journal of Materials Science, 2000, 35(22): 5569-5574. [36] YANG H, ZHANG L J, GUO X Z, et al. Pressureless sintering of silicon carbide ceramics containing zirconium diboride[J]. Ceramics International, 2011, 37(6): 2031-2035. [37] LEE S H, TANAKA H, KAGAWA Y. Spark plasma sintering and pressureless sintering of SiC using aluminum borocarbide additives[J]. Journal of the European Ceramic Society, 2009, 29(10): 2087-2095. [38] BUCEVAC D, MATOVIC B, BABIC B, et al. Effect of post-sintering heat treatment on mechanical properties and microstructure of SiC-TiB2 composites[J]. Materials Science and Engineering: A, 2011, 528(4/5): 2034-2041. [39] MIURA M, YOGO T, HIRANO S I. Phase separation and toughening of SiC-AIN solid-solution ceramics[J]. Journal of Materials Science, 1993, 28(14): 3859-3865. [40] EOM J H, SEO Y K, KIM Y W, et al. Effect of additive composition on mechanical properties of pressureless sintered silicon carbide ceramics sintered with alumina, aluminum nitride and yttria[J]. Metals and Materials International, 2015, 21(3): 525-530. [41] LEE C S, KIM Y W, CHO D H, et al. Microstructure and mechanical properties of self-Reinforced alpha-silicon carbide[J]. Ceramics International, 1998, 24(7): 489-495. [42] KIM S H, KIM Y W, MITOMO M. Microstructure and fracture toughness of liquid-phase-sintered β-SiC containing β-SiC whiskers as seeds[J]. Journal of Materials Science, 2003, 38(6): 1117-1121. [43] LEE S K, KIM C H. Effects of α-sic versus β-sic starting powders on microstructure and fracture toughness of sic sintered with Al2O3-Y2O3 additives[J]. Journal of the American Ceramic Society, 1994, 77(6): 1655-1658. [44] 吕学文. 碳化硅纳米颗粒增韧碳化硅陶瓷的制备及力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. LYU X W. Preparation and mechanical properties of silicon carbide ceramics toughened by silicon carbide nanoparticles[D]. Harbin: Harbin Institute of Technology, 2021 (in Chinese). [45] 蒋梦婷. 低维材料增韧碳化硅陶瓷的制备和性能研究[D]. 湘潭: 湘潭大学, 2021. JIANG M T. Preparation and properties of low-dimensional materials toughened silicon carbide ceramics[D]. Xiangtan: Xiangtan University, 2021 (in Chinese). [46] 张玲洁. 颗粒、晶须强韧化碳化硅陶瓷及在密封环中的应用[D]. 杭州: 浙江大学, 2012. ZHANG L J. Particle and whisker toughened silicon carbide ceramics and its application in sealing ring[D]. Hangzhou: Zhejiang University, 2012 (in Chinese). [47] 陈智勇, 刘建寿, 徐颖强, 等. 碳纤维增韧碳化硅陶瓷基复合材料界面相的研究进展[J]. 陶瓷学报, 2019, 40(6): 701-709. CHEN Z Y, LIU J S, XU Y Q, et al. Research progress on the interphase of C/SiC composites[J]. Journal of Ceramics, 2019, 40(6): 701-709 (in Chinese). [48] 李少峰. 无压烧结碳化硅复合材料的制备与性能研究[J]. 佛山陶瓷, 2022, 32(1): 16-19. LI S F. The research on preparation process and properties of SiC composites by pressureless sintering[J]. Foshan Ceramics, 2022, 32(1): 16-19 (in Chinese). [49] LI Q S, ZHANG Y J, GONG H Y, et al. Enhanced fracture toughness of pressureless-sintered SiC ceramics by addition of graphene[J]. Journal of Materials Science & Technology, 2016, 32(7): 633-638. [50] 张秀玲. 碳化硅/石墨烯复合材料的制备及性能研究[D]. 银川: 北方民族大学, 2023. ZHANG X L. Preparation and properties of silicon carbide/graphene composites[D]. Yinchuan: Beifang University of Nationalities, 2023 (in Chinese). [51] BELMONTE M, NISTAL A, BOUTBIEN P, et al. Toughened and strengthened silicon carbide ceramics by adding graphene-based fillers[J]. Scripta Materialia, 2016, 113: 127-130. [52] MEDVEDOVSKI E. Ballistic performance of armour ceramics: influence of design and structure. Part 1[J]. Ceramics International, 2010, 36(7): 2103-2115. [53] 贾 冬. 碳化硅及陶瓷复合装甲的抗弹性能研究[D]. 北京: 北京交通大学, 2022. JIA D. Study on anti-ballistic performance of silicon carbide and ceramic composite armor[D]. Beijing: Beijing Jiaotong University, 2022 (in Chinese). [54] SHEN Z W, HU D A, YANG G, et al. Ballistic reliability study on SiC/UHMWPE composite armor against armor-piercing bullet[J]. Composite Structures, 2019, 213: 209-219. [55] BERK B, KARAKUZU R, TOKSOY A K. An experimental and numerical investigation on ballistic performance of advanced composites[J]. Journal of Composite Materials, 2017, 51(25): 3467-3480. [56] 吴燕平, 燕青芝. 防弹装甲中的陶瓷材料[J]. 兵器材料科学与工程, 2017, 40(4): 135-140. WU Y P, YAN Q Z. Application of ceramics in armor protection[J]. Ordnance Material Science and Engineering, 2017, 40(4): 135-140 (in Chinese). [57] 秦溶蔓, 朱 波, 乔 琨, 等. 复合结构碳纤维防弹板的防弹性能仿真[J]. 工程科学学报, 2021, 43(10): 1346-1354. QIN R M, ZHU B, QIAO K, et al. Simulation study of the protective performance of composite structure carbon fiber bulletproof board[J]. Chinese Journal of Engineering, 2021, 43(10): 1346-1354 (in Chinese). [58] 刘 胜, 吕攀珂, 张 燕. 防弹陶瓷插板的应用性能研究[J]. 中国个体防护装备, 2010(6): 10-12. LIU S, LYU P K, ZHANG Y. Research on application performance of bulletproof ceramic plate[J]. China Personal Protective Equipment, 2010(6): 10-12 (in Chinese). [59] 丁思源, 刘贵民, 马金盾, 等. 轻量化防弹材料的研究现状及发展趋势[J]. 中国设备工程, 2022(22): 259-263. DING S Y, LIU G M, MA J D, et al. Research status and development trend of lightweight bulletproof materials[J]. China Plant Engineering, 2022(22): 259-263 (in Chinese). [60] 张友敏. SiC陶瓷/UHMWPE复合装甲弹道性能研究[D]. 长沙: 湖南大学, 2019. ZHANG Y M. Research on ballistic performance of SiC ceramic/UHMWPE composite armor[D]. Changsha: Hunan University, 2019 (in Chinese). [61] 李永鹏, 徐豫新, 张 健, 等. SiC陶瓷/UHMWPE纤维复合结构抗12.7 mm穿甲燃烧弹试验与仿真[J]. 兵工学报, 2022, 43(6): 1355-1364. LI Y P, XU Y X, ZHANG J, et al. Test and Simulation of SiC ceramic/UHMWPE fiber composite structure against 12.7 mm armor piercing incendiary projectile[J]. Acta Armamentarii, 2022, 43(6): 1355-1364 (in Chinese). [62] 孙 英. 枪弹对陶瓷/凯芙拉复合靶板的侵彻机理研究[D]. 南京: 南京理工大学, 2010. SUN Y. Study on penetration mechanism of bullets into ceramic/Kevlar composite target[D]. Nanjing: Nanjing University of Science and Technology, 2010 (in Chinese). [63] HU P C, CHENG Y S, ZHANG P, et al. A metal/UHMWPE/SiC multi-layered composite armor against ballistic impact of flat-nosed projectile[J]. Ceramics International, 2021, 47(16): 22497-22513. [64] 郝琛韬. 新型防弹复合材料[J]. 纺织科技进展, 2022(4): 10-13. HAO C T. New bulletproof composite material[J]. Progress in Textile Science & Technology, 2022(4): 10-13 (in Chinese). [65] 朱嘉琦, 曹文鑫. 高性能凯夫拉纳米纤维复合材料[C]//重庆: 第十届国际(中国)功能材料及其应用学术会议, 2019. ZHU J Q, CAO W X. High performance kevlar nanofiber composites[C]//Chongqing: 10th International Conference on Functional Materials and Their Applications, 2019 (in Chinese). [66] 张 磊, 孙 清, 王虎长, 等. E玻璃纤维增强环氧树脂基复合材料力学性能试验研究[J]. 电力建设, 2010, 31(9): 118-121. ZHANG L, SUN Q, WANG H C, et al. Experimental study on the mechanical properties of E-glass fiber/epoxy composite material[J]. Electric Power Construction, 2010, 31(9): 118-121 (in Chinese). [67] 张文睿, 贾 涵, 张 鑫, 等. 超高分子量聚乙烯薄膜制备方法与应用[J]. 中国塑料, 2023, 37(5): 1-8. ZHANG W R, JIA H, ZHANG X, et al. Preparation and applications of ultrahigh molecular weight polyethylene films[J]. China Plastics, 2023, 37(5): 1-8 (in Chinese). [68] 黄良钊, 张巨先. 弹丸对陶瓷靶侵彻试验中的约束效应研究[J]. 兵器材料科学与工程, 1999, 22(4): 13-17. HUANG L Z, ZHANG J X. Study of binding effect in test on impacting and biting ceramics target with ball[J]. Ordnance Material Science and Engineering, 1999, 22(4): 13-17 (in Chinese). [69] 位书航, 陈 克, 虞鑫海. 高性能新型防弹胶粘剂的制备与性能研究[J]. 中国胶粘剂, 2022, 31(5): 13-18+23. WEI S H, CHEN K, YU X H. Preparation and properties of new high-performance bulletproof adhesive[J]. China Adhesives, 2022, 31(5): 13-18+23 (in Chinese). [70] 孔晓鹏. 陶瓷复合装甲脱粘机理和抗多发打击研究[D]. 长沙: 国防科学技术大学, 2012. KONG X P. Research on desticking mechanism and anti-multiple strikes of ceramic composite armor[D]. Changsha: National University of Defense Technology, 2012 (in Chinese). [71] 罗 通. 纤维约束陶瓷复合靶板的制备及抗弹性能研究[D]. 北京: 北京理工大学, 2015. LUO T. Preparation and anti-elastic properties of fiber-confined ceramic composite target plate[D]. Beijing: Beijing Institute of Technology, 2015 (in Chinese). [72] 王曙光, 朱建生. 金属封装陶瓷复合装甲抗弹性能研究[J]. 弹道学报, 2009, 21(4): 68-71. WANG S G, ZHU J S. Study on antibullet performance of metal-ceramic composite armor[J]. Journal of Ballistics, 2009, 21(4): 68-71 (in Chinese). [73] 夏习持, 李永清, 侯海量, 等. 约束对陶瓷/钢复合靶板抗侵彻性能的影响[J]. 高压物理学报, 2023, 37(2): 143-158. XIA X C, LI Y Q, HOU H L, et al. Effect of constraints on the penetration resistance of ceramic/steel composite target plate[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 143-158 (in Chinese). [74] 杨 彬. 军用直升机装甲防护现状与展望[J]. 中国设备工程, 2021(2): 179-182. YANG B. Present situation and prospect of armored protection for military helicopters[J]. China Plant Engineering, 2021(2): 179-182 (in Chinese). [75] 沈志伟, 李伟萍, 黄献聪, 等. SiC、B4C及层状SiC/BN复合结构与防弹性能关系[J]. 硅酸盐学报, 2020, 48(6): 841-848. SHEN Z W, LI W P, HUANG X C, et al. Relationship of ballistic performance between SiC, B4C and laminated composite structure of SiC/BN ceramics[J]. Journal of the Chinese Ceramic Society, 2020, 48(6): 841-848 (in Chinese). [76] 蔺绍江, 胡 锐, 李金山, 等. SiC/Al层状梯度复合材料的制备与抗毁伤特性[J]. 材料科学与工程学报, 2005, 23(1): 35-37. LIN S J, HU R, LI J S, et al. Fabrication and bulletproof properties of SiC/Al laminated graded composites[J]. Journal of Materials Science and Engineering, 2005, 23(1): 35-37 (in Chinese). [77] 蒋宝权, 李玉龙, 刘元镛, 等. SiC增强颗粒分布规律对梯度装甲板抗侵彻过程的影响[J]. 爆炸与冲击, 2005, 25(6): 493-498. JIANG B Q, LI Y L, LIU Y Y, et al. Effects of SiC particle reinforcement distribution on the penetration of functionally graded armour[J]. Explosion and Shock Waves, 2005, 25(6): 493-498 (in Chinese). [78] 韩 辉, 李 军, 焦丽娟, 等. 陶瓷-金属复合材料在防弹领域的应用研究[J]. 材料导报, 2007, 21(2): 34-37. HAN H, LI J, JIAO L J, et al. Study on the application of ceramic-metal composite materials in bulletproof field[J]. Materials Review, 2007, 21(2): 34-37 (in Chinese). |
[1] | 王海涛, 林晨, 樊子民, 唐明强, 赵放, 乐晨, 陈义华, 黄源成. SiC含量对铝基复合材料性能的影响[J]. 硅酸盐通报, 2024, 43(6): 2256-2261. |
[2] | 方婉娴, 曾晨, 张泽, 张明瑜, 黄启忠, 高莹. CeO2/MoSi2改性ZrB2-SiC陶瓷的烧结性能及耐烧蚀性能[J]. 硅酸盐通报, 2024, 43(5): 1937-1949. |
[3] | 张喜飞, 陈定, 顾华志, 黄奥, 付绿平. 碳源对反应烧结碳化硅性能的影响[J]. 硅酸盐通报, 2024, 43(1): 312-316. |
[4] | 赵成琳, 袁文海, 董祎然, 姜葱葱, 何彪, 黄世峰, 程新. 花岗岩废料与玻璃废渣制备发泡陶瓷的研究[J]. 硅酸盐通报, 2024, 43(1): 329-338. |
[5] | 韩炎兴, 邵斯杰, 施韬, 蓝滢佳. 碳化硅晶须对水泥基材料抗拉及断裂性能的影响[J]. 硅酸盐通报, 2023, 42(7): 2300-2308. |
[6] | 董祎然, 赵成琳, 郭伟, 姜葱葱, 黄世峰, 程新. 花岗岩锯泥和大理石废石粉制备发泡陶瓷[J]. 硅酸盐通报, 2023, 42(3): 939-947. |
[7] | 向宇, 余金山, 王洪磊, 周新贵. 碳化硅纤维高温抗氧化性研究进展[J]. 硅酸盐通报, 2022, 41(9): 3234-3242. |
[8] | 郝鸿渐, 李海燕, 万德田, 包亦望, 李月明. 预氧化处理对反应烧结碳化硅微观结构和弯曲强度的影响[J]. 硅酸盐通报, 2022, 41(8): 2889-2895. |
[9] | 武振飞, 王跃超, 陆丽芳, 张弘毅. 无压烧结氮化硅陶瓷的物理性能研究[J]. 硅酸盐通报, 2022, 41(5): 1782-1787. |
[10] | 张帅, 胡肄琛, 牛文芳, 张晨蕾. 复合型陶瓷薄板的制备及其力学性能[J]. 硅酸盐通报, 2022, 41(12): 4419-4424. |
[11] | 李林虎, 唐修检, 王龙, 何东昱, 刘谦, 谭俊. SiC陶瓷表面增韧用环氧树脂基增韧剂的制备与性能研究[J]. 硅酸盐通报, 2022, 41(1): 266-276. |
[12] | 潘彬, 谢俊, 蔡棋, 张峰, 熊德华, 张继红, 王静, 韩建军. 发泡剂对空心石英玻璃微球结构的影响[J]. 硅酸盐通报, 2022, 41(1): 285-294. |
[13] | 刘灿辉, 陶伟杰, 陶莹雪, 贺振华. 沉积温度和时间对多孔SiC薄膜的光致发光性能的影响[J]. 硅酸盐通报, 2021, 40(9): 3090-3097. |
[14] | 崔聪聪, 李珊, 李伟, 包建勋, 张舸, 王功. 立体光固化3D打印成型碳化硅陶瓷的烧结特性[J]. 硅酸盐通报, 2021, 40(6): 1937-1942. |
[15] | 金新新, 林鹏, 刘峰, 李赛赛, 李明辉, 夏晓宇, 劳栋, 贾文宝, 单卿. 碳纤维长度以及添加量对碳化硅网状多孔陶瓷性能的影响[J]. 硅酸盐通报, 2021, 40(4): 1330-1337. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||