[1] ZHANG G X, SONG J X, YANG J S, et al. Performance of mortar and concrete made with a fine aggregate of desert sand[J]. Building and Environment, 2006, 41(11): 1478-1481. [2] ZHANG M H, ZHU X Z, SHI J Y, et al. Utilization of desert sand in the production of sustainable cement-based materials: a critical review[J]. Construction and Building Materials, 2022, 327: 127014. [3] LI Y G, ZHANG H M, CHEN S J, et al. Multi-scale study on the durability degradation mechanism of aeolian sand concrete under freeze-thaw conditions[J]. Construction and Building Materials, 2022, 340: 127433. [4] 乔宏霞, 彭 宽, 陈克凡, 等. 陶瓷骨料再生混凝土高温损伤研究[J]. 硅酸盐通报, 2019, 38(9): 2902-2909. QIAO H X, PENG K, CHEN K F, et al. Study on high temperature damage of ceramic aggregate recycled concrete[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(9): 2902-2909 (in Chinese). [5] 刘 宁, 刘海峰, 杨 浩, 等. 高温对沙漠砂混凝土抗压强度的影响[J]. 广西大学学报(自然科学版), 2018, 43(4): 1581-1587. LIU N, LIU H F, YANG H, et al. Influence of high temperature on compressive strength of desert sand concrete[J]. Journal of Guangxi University (Natural Science Edition), 2018, 43(4): 1581-1587 (in Chinese). [6] 田 帅, 刘海峰, 宋建夏. 高温后高强沙漠砂混凝土力学性能研究[J]. 广西大学学报(自然科学版), 2015, 40(1): 112-120. TIAN S, LIU H F, SONG J X. Research of mechanical properties of high strength desert sand concrete after high temperature[J]. Journal of Guangxi University (Natural Science Edition), 2015, 40(1): 112-120 (in Chinese). [7] 吕剑波, 刘 宁, 刘海峰. 高温后沙漠砂混凝土抗压强度研究[J]. 混凝土, 2017(7): 129-133. LÜ J B, LIU N, LIU H F. Study on the compressive strength of desert sand concrete after elevated temperature[J]. Concrete, 2017(7): 129-133 (in Chinese). [8] 李忠友, 刘元雪, 姚志华. 普通硅酸盐混凝土高温性能劣化分析模型[J]. 防灾减灾工程学报, 2020, 40(2): 229-235. LI Z Y, LIU Y X, YAO Z H. Analysis model on deterioration of ordinary silicate concrete under high temperature[J]. Journal of Disaster Prevention and Mitigation Engineering, 2020, 40(2): 229-235 (in Chinese). [9] ELSANADEDY H M. Residual compressive strength of high-strength concrete exposed to elevated temperatures[J]. Advances in Materials Science and Engineering, 2019, 2019: 6039571. [10] 秦尚源, 陈小龙, 刘海峰, 等. 高温后沙漠砂混凝土抗压强度超声检测[J]. 混凝土, 2021(1): 157-160. QIN S Y, CHEN X L, LIU H F, et al. Ultrasonic testing of compressive strength of desert sand concrete after elevated temperature[J]. Concrete, 2021(1): 157-160 (in Chinese). [11] 李 佳, 刘 清, 邓焙元, 等. 基于灰色理论掺风积沙自密实混凝土强度分析与预测[J]. 新疆大学学报(自然科学版)(中英文), 2021, 38(3): 361-376. LI J, LIU Q, DENG B Y, et al. Strength analysis and prediction of self-compacting concrete based on grey theory[J]. Journal of Xinjiang University (Natural Science Edition) (in Chinese and English), 2021, 38(3): 361-376 (in Chinese). [12] 邓聚龙. 灰色预测与决策[M]. 武汉: 华中科技大学出版社, 1988: 22-32. DENG J L. Gray prediction and decision-making[M]. Wuhan: Huazhong University of Science and Technology Press, 1988: 22-32 (in Chinese). [13] 陈东林, 王学志, 王晨晨, 等. 基于NSGM(1,N)模型的RTSF/PVA矿渣混凝土高温后力学性能分析及预测[J]. 防灾减灾工程学报, 2023, 43(6): 1346-1357. CHEN D L, WANG X Z, WANG C C, et al. Analysis and prediction of mechanical properties of RTSF/PVA slag concrete after high temperature based on NSGM(1,N) model[J]. Journal of Disaster Prevention and Mitigation Engineering, 2023, 43(6): 1346-1357 (in Chinese). [14] 曾 波, 李树良, 孟 伟. 灰色预测理论及其应用[M]. 北京: 科学出版社, 2020. ZENG B, LI S L, MENG W. Grey prediction theory and its application[M]. Beijing: Science Press, 2020 (in Chinese). [15] 沈金生, 焦轼伦, 李 扬, 等. 高强混凝土超声回弹法地区测强曲线试验研究[J]. 混凝土, 2020(4): 145-147. SHEN J S, JIAO S L, LI Y, et al. Study on high-strength concrete ultrasonic rebound method for regional strength curve test[J]. Concrete, 2020(4): 145-147 (in Chinese). [16] 张显军. 超声回弹综合法评定构件混凝土强度的研究[D]. 哈尔滨: 东北林业大学, 2007. ZHANG X J. Study on evaluation of concrete strength by ultrasonic-rebound combined method[D]. Harbin: Northeast Forestry University, 2007 (in Chinese). [17] 孟宏睿. 高温作用后混凝土力学性能及无损检测的试验研究[D]. 西安: 西安建筑科技大学, 2005. MENG H R. The research of the mechanical performance and inspection technology in No damaging method of fired concrete[D]. Xi’an: Xi’an University of Architecture and Technology, 2005 (in Chinese). [18] 高丹盈, 李 晗. 超声回弹综合法推定纤维纳米混凝土强度及经历高温[J]. 建筑材料学报, 2014, 17(6): 1025-1030. GAO D Y, LI H. Evaluation of compressive strength and the highest exposure temperature of fiber and nanosized materials reinforced concrete by ultrasonic-rebound combined method[J]. Journal of Building Materials, 2014, 17(6): 1025-1030 (in Chinese). [19] 吕天启, 赵国藩, 林志伸, 等. 应用回弹超声方法评定火灾高温静置混凝土抗压强度的试验研究[J]. 混凝土, 2002(8): 21-23+32. LV T Q, ZHAO G F, LIN Z S, et al. The experimental research on applying rebound and ultrasonic to assess compressive strength of concrete subjected to fire and considered standing time effect after fire[J]. Concrete, 2002(8): 21-23+32 (in Chinese). [20] 邓明科, 成 媛, 翁世强, 等. 高温后高延性混凝土的抗压性能及微观结构[J]. 复合材料学报, 2020, 37(4): 985-996. DENG M K, CHENG Y, WENG S Q, et al. Compressive properties and micro-structure of high ductility concrete exposed to elevated temperature[J]. Acta Materiae Compositae Sinica, 2020, 37(4): 985-996 (in Chinese). [21] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019. Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Construction Industry Press, 2019 (in Chinese). [22] 刘海峰, 刘 宁. 高温对沙漠砂混凝土轴心抗压强度和静力受压弹性模量的影响[J]. 硅酸盐通报, 2018, 37(11): 3533-3540. LIU H F, LIU N. Influence of high temperature on the axis compressive strength and elastic modulus of desert sand concrete[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(11): 3533-3540 (in Chinese). [23] 中华人民共和国住房和城乡建设部. 回弹法检测混凝土抗压强度技术规程: JGJ/T 23—2011[S]. 北京: 中国建筑工业出版社, 2011. Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical specification for inspecting of concrete compressive strength by rebound method: JGJ/T 23—2011[S]. Beijing: China Construction Industry Press, 2011 (in Chinese). [24] 中国工程建设标准化协会. 超声回弹综合法检测混凝土抗压强度技术规程: T/CECS 02—2020[S]. 北京: 中国计划出版社, 2020. China Engineering Construction Standardization Association. Technical specification for inspecting compressive strength of concrete by ultrasonic- rebound combined method: T/CECS 02—2020[S]. Beijing: China Planning Press, 2020 (in Chinese). [25] LIU H F, LI L Y, TAO R G, et al. Study on the mechanical properties and pore structure of desert sand concrete (DSC) after high temperature[J]. Physics and Chemistry Earth, Parts A/B/C, 2022, 128: 103220. [26] SHEN Y J, PENG C, HAO J S, et al. High temperature resistance of desert sand concrete: strength change and intrinsic mechanism[J]. Construction and Building Materials, 2022, 327: 126948. [27] 张海燕, 袁振生, 闫 佳. 偏高岭土-粉煤灰地聚物混凝土高温后的力学性能研究[J]. 防灾减灾工程学报, 2016, 36(3): 373-379. ZHANG H Y, YUAN Z S, YAN J. Experimental study on mechanical properties of metakaolin-fly ash-based geopolymer concrete after exposure to elevated temperatures[J]. Journal of Disaster Prevention and Mitigation Engineering, 2016, 36(3): 373-379 (in Chinese). [28] MAO Z H, ZHANG J C, MA Q K, et al. Performance evaluation of fiber-reinforced reactive powder concrete exposed to high temperature combining nondestructive test[J]. Journal of Building Engineering, 2022, 61: 105266. [29] 中国工程建设标准化协会. 火灾后工程结构鉴定标准: T/CECS 252—2019[S]. 北京: 中国建筑工业出版社, 2019. China Engineering Construction Standardization Association. Standard for appraisal of engineering structures after fire: T/CECS 252—2019[S]. Beijing: China Construction Industry Press, 2019 (in Chinese). [30] 李 卫, 过镇海. 高温下砼的强度和变形性能试验研究[J]. 建筑结构学报, 1993, 14(1): 8-16. LI W, GUO Z H. Experimental investigation of strength and deformation of concrete at elevated temperature[J]. Journal of Building Structures, 1993, 14(1): 8-16 (in Chinese). [31] 刘思峰. 灰色系统理论及其应用[M]. 北京: 科学出版社, 2017. LIU S F. Grey system theory and its applications[M]. Beijing: Science Press, 2017 (in Chinese). |