[1] DU M R, JING H W, GAO Y, et al. Carbon nanomaterials enhanced cement-based composites: advances and challenges[J]. Nanotechnology Reviews, 2020, 9(1): 115-135. [2] 王 丹. 纳米SiO2对水泥基材料表面改性研究[D]. 济南: 济南大学, 2018. WANG D. The study on surface modification of cement-based materials by nano-silica[D]. Jinan: University of Jinan, 2018 (in Chinese). [3] 高瑞军. 原位聚合制备GO-PCE及对水泥基材料性能影响与作用机理[D]. 北京: 中国建筑材料科学研究总院, 2020. GAO R J. In-situ polymerization of GO-PCE and its effect and action mechanism on the properties of cement-based materials[D]. Beijing: China Building Materials Research Institute, 2020 (in Chinese). [4] KIEW S F, KIEW L V, LEE H B, et al. Assessing biocompatibility of graphene oxide-based nanocarriers: a review[J]. Journal of Controlled Release, 2016, 226: 217-228. [5] 徐凯丽. 石墨烯-水泥基复合材料的制备及其功能性研究[D]. 南京: 东南大学, 2018. XU K L. Preparation and investigation on functional prorperties of graphene-cement composites[D]. Nanjing: Southeast University, 2018 (in Chinese). [6] LI X Y, KORAYEM A H, LI C Y, et al. Incorporation of graphene oxide and silica fume into cement paste: a study of dispersion and compressive strength[J]. Construction and Building Materials, 2016, 123: 327-335. [7] LIU Y H, YU L, ZHANG S H, et al. Dispersion of multiwalled carbon nanotubes by ionic liquid-type Gemini imidazolium surfactants in aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 359(1/2/3): 66-70. [8] DU X, SKACHKO I, BARKER A, et al. Approaching ballistic transport in suspended graphene[J]. Nature Nanotechnology, 2008, 3(8): 491-495. [9] 黄宛真, 杨 倩, 叶晓丹, 等. 石墨烯层数的表征[J]. 材料导报, 2012, 26(7): 26-30. HUANG W Z, YANG Q, YE X D, et al. Characterization of graphene layers[J]. Materials Review, 2012, 26(7): 26-30 (in Chinese). [10] NIETO A, BISHT A, LAHIRI D, et al. Graphene reinforced metal and ceramic matrix composites: a review[J]. International Materials Reviews, 2017, 62(5): 241-302. [11] RHEE I, KIM Y A, SHIN G O, et al. Compressive strength sensitivity of cement mortar using rice husk-derived graphene with a high specific surface area[J]. Construction and Building Materials, 2015, 96: 189-197. [12] ZHU Y W, MURALI S, CAI W W, et al. Graphene and graphene oxide: synthesis, properties, and applications[J]. Advanced Materials, 2010, 22(35): 3906-3924. [13] WU L, LIU L, GAO B, et al. Aggregation kinetics of graphene oxides in aqueous solutions: experiments, mechanisms, and modeling[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2013, 29(49): 15174-15181. [14] SALVETAT J P, BONARD J M, THOMSON N H, et al. Mechanical properties of carbon nanotubes[J]. Applied Physics A, 1999, 69(3): 255-260. [15] CWIRZEN A. Controlling physical properties of cementitious matrixes by nanomaterials[J]. Advanced Materials Research, 2010, 123/124/125: 639-642. [16] CWIRZEN A, HABERMEHL-CWIRZEN K, NASIBULIN A G, et al. SEM/AFM studies of cementitious binder modified by MWCNT and nano-sized Fe needles[J]. Materials Characterization, 2009, 60(7): 735-740. [17] RAFIEE M A, LU W, THOMAS A V, et al. Graphene nanoribbon composites[J]. ACS Nano, 2010, 4(12): 7415-7420. [18] WANG L N, ASLANI F. A review on material design, performance, and practical application of electrically conductive cementitious composites[J]. Construction and Building Materials, 2019, 229: 116892. [19] 武玺旺, 肖建中, 夏 风, 等. 碳纳米管的分散方法与分散机理[J]. 材料导报, 2011, 25(9): 16-19. WU X W, XIAO J Z, XIA F, et al. Dispersion methods and dispersion mechanism of carbon nanotubes[J]. Materials Review, 2011, 25(9): 16-19 (in Chinese). [20] DU H J, PANG S D. Dispersion and stability of graphene nanoplatelet in water and its influence on cement composites[J]. Construction and Building Materials, 2018, 167: 403-413. [21] OZBULUT O E, JIANG Z F, HARRIS D K. Exploring scalable fabrication of self-sensing cementitious composites with graphene nanoplatelets[J]. Smart Material Structures, 2018, 27(11): 115029. [22] JING G J, YE Z M, LI C, et al. A ball milling strategy to disperse graphene oxide in cement composites[J]. New Carbon Materials, 2019, 34(6): 569-577. [23] PAN Z, HE L, QIU L, et al. Mechanical properties and microstructure of a graphene oxide-cement composite[J]. Cement and Concrete Composites, 2015, 58: 140-147. [24] ZHAO L, GUO X L, GE C, et al. Mechanical behavior and toughening mechanism of polycarboxylate superplasticizer modified graphene oxide reinforced cement composites[J]. Composites Part B: Engineering, 2017, 113: 308-316. [25] ZHAO L, GUO X L, LIU Y Y, et al. Investigation of dispersion behavior of GO modified by different water reducing agents in cement pore solution[J]. Carbon, 2018, 127: 255-269. [26] PARVEEN S, RANA S, FANGUEIRO R, et al. Characterizing dispersion and long term stability of concentrated carbon nanotube aqueous suspensions for fabricating ductile cementitious composites[J]. Powder Technology, 2017, 307: 1-9. [27] PIERARD N, FONSECA A, KONYA Z, et al. Production of short carbon nanotubes with open tips by ball milling[J]. Chemical Physics Letters, 2001, 335(1/2): 1-8. [28] TORABIAN I F, LI W W, REDAELLI E. Dispersion of multi-walled carbon nanotubes and its effects on the properties of cement composites[J]. Cement and Concrete Composites, 2016, 74: 154-163. [29] SINDU B S, SASMAL S. Properties of carbon nanotube reinforced cement composite synthesized using different types of surfactants[J]. Construction and Building Materials, 2017, 155: 389-399. [30] 施 韬, 朱 敏, 李泽鑫, 等. 碳纳米管改性水泥基复合材料的研究进展[J]. 复合材料学报, 2018, 35(5): 1033-1049. SHI T, ZHU M, LI Z X, et al. Review of research progress on carbon nanotubes modified cementitious composites[J]. Acta Materiae Compositae Sinica, 2018, 35(5): 1033-1049 (in Chinese). [31] 李庚英, 王培铭. 碳纳米管-水泥基复合材料的力学性能和微观结构[J]. 硅酸盐学报, 2005, 33(1): 105-108. LI G Y, WANG P M. Microstructure and mechanical properties of carbon nanotubes cement matrix composites[J]. Journal of the Chinese Ceramic Society, 2005, 33(1): 105-108 (in Chinese). [32] AN J, MCINNIS M, CHUNG W, et al. Feasibility of using graphene oxide nanoflake (GONF) as additive of cement composite[J]. Applied Sciences, 2018, 8(3): 419. [33] 晏 琪, 陈 彪, 李金山. 碳纳米材料增强钛基复合材料研究进展[J]. 中国材料进展, 2019, 38(11): 1061-1073. YAN Q, CHEN B, LI J S. A review of carbon nanomaterials reinforced titanium metal matrix composites[J]. Materials China, 2019, 38(11): 1061-1073 (in Chinese). [34] 吴乐华, 吴其胜, 许 文. 干湿球磨法制备石墨烯及其摩擦性能表征[J]. 材料科学与工程学报, 2014, 32(5): 678-681+740. WU L H, WU Q S, XU W. Preparation and tribological properties of graphene by dry and wet ball milling[J]. Journal of Materials Science and Engineering, 2014, 32(5): 678-681+740 (in Chinese). [35] 张继旭, 叶帆胜. 碳纳米管在水泥基复合材料中的分散方法研究[J]. 建材世界, 2020, 41(5): 6-9. ZHANG J X, YE F S. Study on dispersion method of carbon nanotubes in cement-based composites[J]. The World of Building Materials, 2020, 41(5): 6-9 (in Chinese). [36] DONG W K, LI W G, WANG K J, et al. Physicochemical and piezoresistive properties of smart cementitious composites with graphene nanoplates and graphite plates[J]. Construction and Building Materials, 2021, 286: 122943. [37] KONSTA-GDOUTOS M S, METAXA Z S, SHAH S P. Highly dispersed carbon nanotube reinforced cement based materials[J]. Cement and Concrete Research, 2010, 40(7): 1052-1059. [38] CHEN S J, ZOU B, COLLINS F, et al. Predicting the influence of ultrasonication energy on the reinforcing efficiency of carbon nanotubes[J]. Carbon, 2014, 77: 1-10. [39] GAO F F, TIAN W, WANG Z, et al. Effect of diameter of multi-walled carbon nanotubes on mechanical properties and microstructure of the cement-based materials[J]. Construction and Building Materials, 2020, 260: 120452. [40] ZOU B, CHEN S J, KORAYEM A H, et al. Effect of ultrasonication energy on engineering properties of carbon nanotube reinforced cement pastes[J]. Carbon, 2015, 85: 212-220. [41] 丁建涛, 孟凡涛, 隋 江, 等. 石墨烯分散方法研究进展[J]. 应用化工, 2018, 47(5): 1043-1047. DING J T, MENG F T, SUI J, et al. A review of graphene dispersion method[J]. Applied Chemical Industry, 2018, 47(5): 1043-1047 (in Chinese). [42] 赵 丽. PC改性GO对水泥基复合材料的强化及其机理研究[D]. 南京: 东南大学, 2018. ZHAO L. Effects of PC modified GO on the reinforcement of cement composites[D]. Nanjing: Southeast University, 2018 (in Chinese). [43] COLLINS F, LAMBERT J, DUAN W H. The influences of admixtures on the dispersion, workability, and strength of carbon nanotube-OPC paste mixtures[J]. Cement and Concrete Composites, 2012, 34(2): 201-207. [44] WANG B M, HAN Y, LIU S. Effect of highly dispersed carbon nanotubes on the flexural toughness of cement-based composites[J]. Construction and Building Materials, 2013, 46: 8-12. [45] SOBOLKINA A, MECHTCHERINE V, KHAVRUS V, et al. Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix[J]. Cement and Concrete Composites, 2012, 34(10): 1104-1113. [46] LUO J L, DUAN Z D, LI H. The influence of surfactants on the processing of multi-walled carbon nanotubes in reinforced cement matrix composites[J]. Physica Status Solidi (A), 2009, 206(12): 2783-2790. [47] 牛荻涛, 何嘉琦, 傅 强, 等. 碳纳米管对水泥基材料微观结构及耐久性能的影响[J]. 硅酸盐学报, 2020, 48(5): 705-717. NIU D T, HE J Q, FU Q, et al. Effect of carbon nanotubes on microstructure and durability of cement-based materials[J]. Journal of the Chinese Ceramic Society, 2020, 48(5): 705-717 (in Chinese). [48] TASIS D, TAGMATARCHIS N, BIANCO A, et al. Chemistry of carbon nanotubes[J]. Chemical Reviews, 2006, 106(3): 1105-1136. [49] 江琳沁, 高 濂. 化学处理对碳纳米管分散性能的影响[J]. 无机材料学报, 2003, 18(5): 1135-1138. JIANG L Q, GAO L. Effect of chemical treatment on the dispersion properties of carbon nanotubes[J]. Journal of Inorganic Materials, 2003, 18(5): 1135-1138 (in Chinese). [50] CHUAH S, LI W G, CHEN S J, et al. Investigation on dispersion of graphene oxide in cement composite using different surfactant treatments[J]. Construction and Building Materials, 2018, 161: 519-527. [51] KIM H K, NAM I W, LEE H K. Enhanced effect of carbon nanotube on mechanical and electrical properties of cement composites by incorporation of silica fume[J]. Composite Structures, 2014, 107: 60-69. [52] LI X Y, LI C Y, LIU Y M, et al. Improvement of mechanical properties by incorporating graphene oxide into cement mortar[J]. Mechanics of Advanced Materials and Structures, 2018, 25(15/16): 1313-1322. [53] CHENG Z, LIU Y M, WU J Y, et al. Graphene oxide-coated fly ash for high performance and low-carbon cementitious composites[J]. Journal of Materials Research and Technology, 2023, 25: 6710-6724. [54] SHANG Y, ZHANG D, YANG C, et al. Effect of graphene oxide on the rheological properties of cement pastes[J]. Construction and Building Materials, 2015, 96: 20-28. [55] LUDVIG P, CALIXTO J M F, LADEIRA L O, et al. Analysis of cementitious composites prepared with carbon nanotubes and nanofibers synthesized directly on clinker and silica fume[J]. Journal of Materials in Civil Engineering, 2017, 29(6): 06017001. [56] LUDVIG P, LADEIRA L O, CALIXTO J M, et al. In-situ synthesis of multiwall carbon nanotubes on portland cement clinker[C]//11th International Conference on Advanced Materials, Rie de Janeire, Brazil. 2009. [57] NASIBULINA L I, ANOSHKIN I V, SEMENCHA A V, et al. Carbon nanofiber/clinker hybrid material as a highly efficient modificator of mortar mechanical properties[J]. Materials Physics and Mechanics, 2012, 13(1): 77-84. [58] 王宝民, 韩 瑜, 宋 凯. 碳纳米管分散性研究进展[J]. 材料导报, 2012, 26(7): 23-25+30. WANG B M, HAN Y, SONG K. Research progress of the dispersion of carbon nanotubes[J]. Materials Review, 2012, 26(7): 23-25+30 (in Chinese). [59] MARTIN C A, SANDLER J K W, WINDLE A H, et al. Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites[J]. Polymer, 2005, 46(3): 877-886. [60] SHAO H Y, CHEN B M, LI B, et al. Influence of dispersants on the properties of CNTs reinforced cement-based materials[J]. Construction and Building Materials, 2017, 131: 186-194. [61] 唐倩兰, 黄 俊, 田国鑫. 碳纳米管分散性及其水泥基复合材料力学性能的研究进展[J]. 功能材料, 2017, 48(6): 6042-6049. TANG Q L, HUANG J, TIAN G X. Dispersion of carbon nanotubes and research progress on mechanical properties of carbon nanotubes cement-based composites[J]. Journal of Functional Materials, 2017, 48(6): 6042-6049 (in Chinese). [62] SATO H, SANO M. Characteristics of ultrasonic dispersion of carbon nanotubes aided by antifoam[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 322(1/2/3): 103-107. [63] YU J R, GROSSIORD N, KONING C E, et al. Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution[J]. Carbon, 2007, 45(3): 618-623. [64] JIANG L Q, GAO L, SUN J. Production of aqueous colloidal dispersions of carbon nanotubes[J]. Journal of Colloid and Interface Science, 2003, 260(1): 89-94. [65] 詹达富. 石墨烯水泥基复合材料的制备及机敏性能研究[D]. 北京: 北京建筑大学, 2021. ZHAN D F. Preparation and research on mechanical sensitivity of graphene cement-based composite[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2021 (in Chinese). [66] 聂 鹏, 王新鑫, 高 霁, 等. 纳米复合材料分散相分散均匀性的分形表征[J]. 北京航空航天大学学报, 2009, 35(7): 852-855. NIE P, WANG X X, GAO J, et al. Fractal characterization of uniformity of discrete phase in nanocomposites[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(7): 852-855 (in Chinese). [67] 杜宇航. 氧化石墨烯/碳纳米管协同增强水泥基复合材料及其机理研究[D]. 上海: 上海交通大学, 2021. DU Y H. Effects and mechanism of GO/CNTs hybrid on the enhancement of cement composites[D]. Shanghai: Shanghai Jiao Tong University, 2021 (in Chinese). [68] 齐国栋. 氧化石墨烯的分散行为及对水泥水化性能影响研究[D]. 北京: 北京建筑大学, 2021. QI G D. The dispersion behavior of graphene oxide and the effect on the hydrationperformance of cement[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2021 (in Chinese). [69] KINLOCH I A, ROBERTS S A, WINDLE A H. A rheological study of concentrated aqueous nanotube dispersions[J]. Polymer, 2002, 43(26): 7483-7491. [70] FAN Z H, HSIAO K T, ADVANI S G. Experimental investigation of dispersion during flow of multi-walled carbon nanotube/polymer suspension in fibrous porous media[J]. Carbon, 2004, 42(4): 871-876. [71] YANG Y, GRULKE E A, ZHANG Z G, et al. Thermal and rheological properties of carbon nanotube-in-oil dispersions[J]. Journal of Applied Physics, 2006, 99(11): 114307. |