[1] 王瑜玲, 王春福, 张飞燕. 3D打印混凝土性能要求及相关外加剂研究进展[J]. 硅酸盐通报, 2021, 40(6): 1844-1854. WANG Y L, WANG C F, ZHANG F Y. Review on performance requirements and related admixtures of 3D printed concrete[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(6): 1844-1854 (in Chinese). [2] 雷 斌, 马 勇, 熊悦辰, 等. 3D打印混凝土材料制备方法研究[J]. 混凝土, 2018(2): 145-149+153. LEI B, MA Y, XIONG Y C, et al. Study on preparation method of 3D printing concrete material[J]. Concrete, 2018(2): 145-149+153 (in Chinese). [3] 齐 甦, 李庆远, 崔小鹏, 等. 3D打印混凝土材料的研究现状与展望[J]. 混凝土, 2021(1): 36-39. QI S, LI Q Y, CUI X P, et al. Research status and prospect of 3D printed concrete materials[J]. Concrete, 2021(1): 36-39 (in Chinese). [4] 焦泽坤, 王栋民, 王启宝, 等. 3D打印混凝土材料可打印性的影响因素与测试方法[J]. 硅酸盐通报, 2021, 40(6): 1821-1831. JIAO Z K, WANG D M, WANG Q B, et al. Influencing factors and testing methods of printability of 3D printing concrete materials[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(6): 1821-1831 (in Chinese). [5] 常西栋, 李维红, 王 乾. 3D打印混凝土材料及性能测试研究进展[J]. 硅酸盐通报, 2019, 38(8): 2435-2441. CHANG X D, LI W H, WANG Q. Research progress of 3D printed concrete materials and its performance test[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(8): 2435-2441 (in Chinese). [6] HOU S D, XIAO J Z, DUAN Z H, et al. Fresh properties of 3D printed mortar with recycled powder[J]. Construction and Building Materials, 2021, 309: 125186. [7] PANDA B, UNLUER C, TAN M J. Investigation of the rheology and strength of geopolymer mixtures for extrusion-based 3D printing[J]. Cement and Concrete Composites, 2018, 94: 307-314. [8] CHEN, LI, FIGUEIREDO C, et al. Limestone and calcined clay-based sustainable cementitious materials for 3D concrete printing: a fundamental study of extrudability and early-age strength development[J]. Applied Sciences, 2019, 9(9): 1809. [9] LONG W J, TAO J L, LIN C, et al. Rheology and buildability of sustainable cement-based composites containing micro-crystalline cellulose for 3D-printing[J]. Journal of Cleaner Production, 2019, 239: 118054. [10] 裴 强, 胡顺彩, 丁 彧. 粉煤灰改性水泥基材料在建筑3D打印中的研究现状及应用探索[J]. 煤炭技术, 2022, 41(9): 223-226. PEI Q, HU S C, DING Y. Research status and application exploration of cement-based materials modified by fly ash in building 3D printing[J]. Coal Technology, 2022, 41(9): 223-226 (in Chinese). [11] 范 杰, 邹书琴, 杨雨霏, 等. 大掺量粉煤灰型水泥砂浆的力学性能及干缩性能研究[J]. 混凝土, 2020(6): 130-133. FAN J, ZOU S Q, YANG Y F, et al. Experimental study on mechanical and drying shrinkage properties of high volume fly ash cement mortar[J]. Concrete, 2020(6): 130-133 (in Chinese). [12] 李维红, 常西栋, 王 乾, 等. 矿物掺合料对3D打印水泥基材料性能的影响[J]. 硅酸盐通报, 2020, 39(10): 3101-3107+3114. LI W H, CHANG X D, WANG Q, et al. Effect of mineral admixture on properties of 3D printing cement-based materials[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(10): 3101-3107+3114 (in Chinese). [13] 吴伟鸿, 罗素蓉, 欧 翔, 等. 矿物掺合料对3D打印水泥基材料力学各向异性的影响[J]. 福州大学学报(自然科学版), 2023, 51(2): 286-292. WU W H, LUO S R, OU X, et al. Effect of mineral admixtures on mechanical anisotropy of 3D printed cement-based materials[J]. Journal of Fuzhou University (Natural Science Edition), 2023, 51(2): 286-292 (in Chinese). [14] 王玉倩, 潘钢华, 张菁燕. 凹凸棒石粘土在建材中的应用研究[J]. 硅酸盐通报, 2010, 29(6): 1353-1357. WANG Y Q, PAN G H, ZHANG J Y. Research on application of attapulgite in building material[J]. Bulletin of the Chinese Ceramic Society, 2010, 29(6): 1353-1357 (in Chinese). [15] 吴寅瑞, 金 娇, 陈柏臻, 等. 坡缕石在建材领域的应用研究进展[J]. 硅酸盐通报, 2018, 37(8): 2436-2441. WU Y R, JIN J, CHEN B Z, et al. Review on the application of palygorskite in building materials[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(8): 2436-2441 (in Chinese). [16] PANDA B, RUAN S Q, UNLUER C, et al. Improving the 3D printability of high volume fly ash mixtures via the use of nano attapulgite clay[J]. Composites Part B: Engineering, 2019, 165: 75-83. [17] 黄艳玲, 元 强, 刘耀强, 等. 外加剂对半流动性自密实混凝土滑模施工性能的影响[J]. 材料导报, 2019, 33(增刊1): 254-260. HUANG Y L, YUAN Q, LIU Y Q, et al. Influence of additives on slipform construction performance of semi-fluidity self-compacting concrete[J]. Materials Reports, 2019, 33(supplement 1): 254-260 (in Chinese). [18] 余 越, 贾军红, 段 斌, 等. 凹凸棒土与纳米二氧化硅对高强石膏浆体3D可打印性的影响[J]. 硅酸盐通报, 2021, 40(6): 1987-1996. YU Y, JIA J H, DUAN B, et al. Effects of attapulgite and nano-silica on 3D printability of high strength gypsum plaster[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(6): 1987-1996 (in Chinese). [19] ZHOU W, ZHANG Y M, MA L, et al. Influence of printing parameters on 3D printing engineered cementitious composites (3DP-ECC)[J]. Cement and Concrete Composites, 2022, 130: 104562. [20] BUSWELL R A, LEAL DE SILVA W R, JONES S Z, et al. 3D printing using concrete extrusion: a roadmap for research[J]. Cement and Concrete Research, 2018, 112: 37-49. [21] MA G W, WANG L, JU Y. State-of-the-art of 3D printing technology of cementitious material: an emerging technique for construction[J]. Science China Technological Sciences, 2018, 61(4): 475-495. [22] YANG H S, CHE Y J. Recycling of aggregate micro fines as a partial replacement for fly ash in 3D printing cementitious materials[J]. Construction and Building Materials, 2022, 321: 126372. [23] MORTADA Y, MOHAMMAD M, MANSOOR B, et al. Development of test methods to evaluate the printability of concrete materials for additive manufacturing[J]. Materials, 2022, 15(18): 6486. [24] SONEBI M, ABDALQADER A, FAYYAD T, et al. Optimisation of rheological parameters, induced bleeding, permeability and mechanical properties of supersulfated cement grouts[J]. Construction and Building Materials, 2020, 262: 120078. [25] ZHANG Y, ZHANG Y S, LIU G J, et al. Fresh properties of a novel 3D printing concrete ink[J]. Construction and Building Materials, 2018, 174: 263-271. [26] YANG H S, CHE Y J, SHI M Y. Influences of calcium carbonate nanoparticles on the workability and strength of 3D printing cementitious materials containing limestone powder[J]. Journal of Building Engineering, 2021, 44: 102976. [27] KHALIL N, AOUAD G, EL CHEIKH K, et al. Use of calcium sulfoaluminate cements for setting control of 3D-printing mortars[J]. Construction and Building Materials, 2017, 157: 382-391. [28] 唐振中, 贾鲁涛, 林永权, 等. 钨尾矿粉对水泥基3D打印混凝土流变、水化及力学性能的影响[J]. 材料导报, 2023: 15. TANG Z Z, JIA L T, LIN Y Q, et al. Effect of tungsten tailing powder on rheology, hydration and mechanical properties of cement-based 3D printing concrete[J]. Materials Reports, 2023: 15 (in Chinese). [29] BAZ B, AOUAD G, KLEIB J, et al. Durability assessment and microstructural analysis of 3D printed concrete exposed to sulfuric acid environments[J]. Construction and Building Materials, 2021, 290: 123220. [30] 叶俊宏, 郑 怡, 余江滔, 等. 3D打印纤维增强混凝土材料研究进展[J]. 硅酸盐学报, 2021, 49(11): 2538-2548. YE J H, ZHENG Y, YU J T, et al. Research progress on 3D printable fiber reinforced concrete[J]. Journal of the Chinese Ceramic Society, 2021, 49(11): 2538-2548 (in Chinese). [31] PANDA B, CHANDRA PAUL S, JEN TAN M. Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material[J]. Materials Letters, 2017, 209: 146-149. [32] CHE Y J, YANG H S. Hydration products, pore structure, and compressive strength of extrusion-based 3D printed cement pastes containing nano calcium carbonate[J]. Case Studies in Construction Materials, 2022, 17: e01590. [33] 王 里, 李丹利, 叶珂含, 等. 水泥基复合材料3D可打印性的量化、优化及标准化[J]. 硅酸盐通报, 2021, 40(6): 1814-1820. WANG L, LI D L, YE K H, et al. Quantification, optimization and standardization of 3D printability of cementitious composites[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(6): 1814-1820 (in Chinese). [34] MA G W, LI Z J, WANG L. Printable properties of cementitious material containing copper tailings for extrusion based 3D printing[J]. Construction and Building Materials, 2018, 162: 613-627. [35] VARELA H, BARLUENGA G, PALOMAR I. Influence of nanoclays on flowability and rheology of SCC pastes[J]. Construction and Building Materials, 2020, 243: 118285. [36] 阎 杰, 于旭涛, 刘兴隆, 等. 煅烧纳米凹凸棒土对再生混凝土性能的影响[J]. 科学技术与工程, 2023, 23(23): 10059-10066. YAN J, YU X T, LIU X L, et al. Effect of nano attapulgite on properties of recycled aggregate concrete[J]. Science Technology and Engineering, 2023, 23(23): 10059-10066 (in Chinese). [37] 刘 竞. 引气剂与凹凸棒土对新拌混凝土触变性能的影响研究[J]. 混凝土与水泥制品, 2016(4): 5-9. LIU J. Effecting research of air-entraining agent and attapulgite on thixotropy performance of fresh concrete[J]. China Concrete and Cement Products, 2016(4): 5-9 (in Chinese). [38] 阎 杰, 陆 超, 柏永清, 等. 煅烧纳米凹凸棒土对再生混凝土劈拉、抗折强度影响研究[J]. 江苏科技大学学报(自然科学版), 2023, 37(4): 111-118. YAN J, LU C, BAI Y Q, et al. Study on the influence of calcined nano-attapulgite on splitting and bending strength of recycled concrete[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2023, 37(4): 111-118 (in Chinese). [39] YAN J, LIU X L, WANG X T, et al. Influence of nano-attapulgite on compressive strength and microstructure of recycled aggregate concrete[J]. Cement and Concrete Composites, 2022, 134: 104788. [40] CHEN M X, LI L B, WANG J A, et al. Rheological parameters and building time of 3D printing sulphoaluminate cement paste modified by retarder and diatomite[J]. Construction and Building Materials, 2020, 234: 117391. [41] RAHUL A V, SANTHANAM M, MEENA H, et al. 3D printable concrete: mixture design and test methods[J]. Cement and Concrete Composites, 2019, 97: 13-23. [42] YUAN Q, ZHOU D J, KHAYAT K H, et al. On the measurement of evolution of structural build-up of cement paste with time by static yield stress test vs small amplitude oscillatory shear test[J]. Cement and Concrete Research, 2017, 99: 183-189. [43] 金 源, 徐嘉宾, 孙登田, 等. 纳米二氧化硅对白水泥基3D打印材料结构变形、流变及力学性能的影响[J]. 硅酸盐通报, 2021, 40(6): 1855-1862. JIN Y, XU J B, SUN D T, et al. Effect of nano-silica on structural deformation, rheological and mechanical properties of 3D printed white Portland cement-based materials[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(6): 1855-1862 (in Chinese). [44] ROUSSEL N. A thixotropy model for fresh fluid concretes: theory, validation and applications[J]. Cement and Concrete Research, 2006, 36(10): 1797-1806. [45] PERROT A, PIERRE A, VITALONI S, et al. Prediction of lateral form pressure exerted by concrete at low casting rates[J]. Materials and Structures, 2015, 48(7): 2315-2322. [46] QIAN Y, KAWASHIMA S. Use of creep recovery protocol to measure static yield stress and structural rebuilding of fresh cement pastes[J]. Cement and Concrete Research, 2016, 90: 73-79. [47] QUANJI Z J, LOMBOY G R, WANG K J. Influence of nano-sized highly purified magnesium alumino silicate clay on thixotropic behavior of fresh cement pastes[J]. Construction and Building Materials, 2014, 69: 295-300. [48] YAO H, XIE Z L, LI Z M, et al. The relationship between the rheological behavior and interlayer bonding properties of 3D printing cementitious materials with the addition of attapulgite[J]. Construction and Building Materials, 2022, 316: 125809. [49] PANDA B, PAUL S C, HUI L J, et al. Additive manufacturing of geopolymer for sustainable built environment[J]. Journal of Cleaner Production, 2017, 167: 281-288. [50] MA G, R A, XIE P P, et al. 3D-printable aerogel-incorporated concrete: anisotropy influence on physical, mechanical, and thermal insulation properties[J]. Construction and Building Materials, 2022, 323: 126551. [51] YE J H, CUI C, YU J T, et al. Fresh and anisotropic-mechanical properties of 3D printable ultra-high ductile concrete with crumb rubber[J]. Composites Part B: Engineering, 2021, 211: 108639. [52] 侯少丹, 肖建庄, 段珍华. 3D打印细石混凝土调配及其可打印性和力学性能[J]. 建筑材料学报, 2022, 25(7): 730-736. HOU S D, XIAO J Z, DUAN Z H. Preparation of 3D printable concrete with small coarse aggregate and its printability and mechanical properties[J]. Journal of Building Materials, 2022, 25(7): 730-736 (in Chinese). [53] 李泽民, 元 强, 左胜浩, 等. 3D打印水泥基材料层间界面研究综述[J]. 中国建材科技, 2021, 30(3): 18-22. LI Z M, YUAN Q, ZUO S H, et al. A review on interlayer bonding of 3D printing cement-based materials[J]. China Building Materials Science & Technology, 2021, 30(3): 18-22 (in Chinese). [54] PAN T H, JIANG Y Q, HE H, et al. Effect of structural build-up on interlayer bond strength of 3D printed cement mortars[J]. Materials, 2021, 14(2): 236. |