硅酸盐通报 ›› 2024, Vol. 43 ›› Issue (5): 1600-1614.
• “3D 打印无机非金属材料”专题(II) • 上一篇 下一篇
杨彦安1,2, 李鹤1,2, 穆保霞2,3
收稿日期:
2023-10-23
修订日期:
2023-12-22
出版日期:
2024-05-15
发布日期:
2024-06-06
通信作者:
李鹤,博士,副教授。E-mail:lihe@xju.edu.cn
作者简介:
杨彦安(1999—),男,硕士研究生。主要从事陶瓷光固化3D打印的研究。E-mail:1766130746@qq.com
基金资助:
YANG Yan'an1,2, LI He1,2, MU Baoxia2,3
Received:
2023-10-23
Revised:
2023-12-22
Online:
2024-05-15
Published:
2024-06-06
摘要: 3D打印技术因具有加工精度高、成本低、操作简易、制造灵动等优点,被广泛应用于航空航天、汽车、医疗、武器等领域。将3D打印技术与陶瓷成型制造相结合,可以解决很多使用传统陶瓷制造技术带来的问题。3D打印技术主要有喷墨打印技术、浆料直写成型技术、光固化成型技术、陶瓷熔融沉积成型技术、激光选区烧结成型技术。本文概述了各3D打印技术的特点及其研究进展,阐述了光固化成型技术中的陶瓷浆料制备、后处理工艺,讨论了有限元数值模拟在3D陶瓷打印技术领域的应用,分析了氧化硅、碳化硅、氧化铝、氧化锆、陶瓷前驱体、磷酸三钙陶瓷的特性及其应用现状,最后总结了陶瓷3D打印技术目前存在的问题以及未来发展的潜力。
中图分类号:
杨彦安, 李鹤, 穆保霞. 陶瓷3D打印技术研究进展[J]. 硅酸盐通报, 2024, 43(5): 1600-1614.
YANG Yan'an, LI He, MU Baoxia. Research Progress of Ceramic 3D Printing Technology[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1600-1614.
[1] HOU X, HU Y H, GRINTHAL A, et al. Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour[J]. Nature, 2015, 519(7541): 70-73. [2] HULL C. Apparatus for production of three dimensional objects by stereolithography: US6027324[P]. 2000-02-22. [3] 佳能有限公司. 佳能携陶瓷3D打印服务亮相中国国际先进陶瓷展览会[J]. 广东印刷, 2023(4): 76. Canon Limited. Canon brought ceramic 3D printing service to China International Advanced Ceramics Exhibition[J]. Guangdong printing, 2023(4): 76 (in Chinese). [4] 杨孟孟, 罗旭东, 谢志鹏. 陶瓷3D打印技术综述[J]. 人工晶体学报, 2017, 46(1): 183-186+191. YANG M M, LUO X D, XIE Z P. Review of 3D printing technology of ceramic[J]. Journal of Synthetic Crystals, 2017, 46(1): 183-186+191 (in Chinese). [5] 施 哲, 刘伟业, 翟 东, 等. 3D打印制备镁黄长石生物陶瓷骨组织工程支架及其性能[J]. 无机材料学报, 2023, 38(7): 763-770. SHI Z, LIU W Y, ZHAI D, et al. Akermanite scaffolds for bone tissue engineering: 3D printing using polymer precursor and scaffold properties[J]. Journal of Inorganic Materials, 2023, 38(7): 763-770 (in Chinese). [6] SHI Y L, WANG W Q. 3D inkjet printing of the zirconia ceramic implanted teeth[J]. Materials Letters, 2020, 261: 127131. [7] YU Y, ZOU B, WANG X F, et al. Rheological behavior and curing deformation of paste containing 85wt% Al2O3 ceramic during SLA-3D printing[J]. Ceramics International, 2022, 48(17): 24560-24570. [8] LI S, ZHANG Y B, ZHAO T, et al. Additive manufacturing of SiBCN/Si3N4w composites from preceramic polymers by digital light processing[J]. RSC Advances, 2020, 10(10): 5681-5689. [9] 浅析喷墨打印与传统丝印技术的工艺与特点[J]. 网印工业, 2021(7): 30-32. Analysis on the process and characteristics of ink-jet printing and traditional screen printing technology[J]. Screen Printing Industry, 2021(7): 30-32 (in Chinese). [10] LIU K Q, FANG K J, CHEN W C, et al. Hydroxyethyl methyl cellulose controls the diffusion behavior of pico-liter scale ink droplets on silk to improve inkjet printing performance[J]. International Journal of Biological Macromolecules, 2023, 224: 1252-1265. [11] ZHANG K, FANG K J, SUN F Y, et al. The hydrophobicity and swelling of methyl cellulose coating synergistically enhancing the inkjet printing qualities of cotton fabric[J]. Progress in Organic Coatings, 2022, 173: 107187. [12] 刘 沁. 浅析喷墨打印技术[J]. 广东印刷, 2021(2): 29-31. LIU Q. Analysis of inkjet printing technology[J]. Guangdong Printing, 2021(2): 29-31 (in Chinese). [13] 何君勇, 李路海. 喷墨打印技术进展[J]. 中国印刷与包装研究, 2009, 1(6): 1-9. HE J Y, LI L H. Progress and trends of ink-jet printing technology[J]. China Printing and Packaging Study, 2009, 1(6): 1-9 (in Chinese). [14] CESARANO J, SEGALMAN R, CALVERT P. Robocasting provides moldless fabrication from slurry deposition[J]. Ceramic Industry, 1998. [15] 李西敏, 杨 韬, 彭必友, 等. 二氧化钛陶瓷浆料的制备及其直写成型3D打印[J]. 复合材料学报, 2022, 39(7): 3510-3517. LI X M, YANG T, PENG B Y, et al. Preparation of titanium dioxide ceramic slurry and its 3D printing for direct-ink-writing[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3510-3517 (in Chinese). [16] 李尹豪. 氧化铝陶瓷浆料的直写成型研究和性能分析[D]. 盐城: 盐城工学院, 2023. LI Y H. Study on direct writing molding of alumina ceramic slurry and its performance analysis[D]. Yancheng: Yancheng Institute of Technology, 2023 (in Chinese). [17] 周振豪, 姜勇刚, 冯军宗, 等. 直写成型制备多孔陶瓷技术研究进展[J]. 材料导报, 2023, 37(4): 77-83. ZHOU Z H, JIANG Y G, FENG J Z, et al. Direct ink writing of porous ceramics: a review[J]. Materials Reports, 2023, 37(4): 77-83 (in Chinese). [18] TAN S, BIN MOHD SHAFARI M I S, CHAN C K, et al. An approach to 3D print liquid ceramic slurries[J]. Materials Today: Proceedings, 2022, 70: 487-491. [19] 周 婧, 樊云光, 卢 林, 等. 直写成型氧化锆生物陶瓷的制备及性能研究[J]. 材料导报, 2023, 37(17): 48-53. ZHOU J, FAN Y G, LU L, et al. Preparation and properties of zirconia bioceramics by direct ink writing[J]. Materials Reports, 2023, 37(17): 48-53 (in Chinese). [20] YE Z Y, CHU C Y, ZHANG D W, et al. Study on 3D-direct ink writing based on adding silica submicron-particles to improve the rheological properties of alumina ceramic ink[J]. Materials Today Communications, 2021, 28: 102534. [21] SOLA A, TRINCHI A. Fused deposition modeling of composite materials at a glance-supplementary tables[M]//Fused Deposition Modeling of Composite Materials. Amsterdam: Elsevier, 2023: 329-445. [22] NIU F R, YANG X L, LI Y B, et al. Fused deposition modeling of Si3N4 ceramics: a cost-effective 3D-printing route for dense and high performance non-oxide ceramic materials[J]. Journal of the European Ceramic Society, 2022, 42(15): 7369-7376. [23] GUAN Z H, YANG X L, LIU P, et al. Additive manufacturing of zirconia ceramic by fused filament fabrication[J]. Ceramics International, 2023, 49(17): 27742-27749. [24] 张 力, 杨现锋, 徐协文, 等. 熔融沉积法3D打印制备氧化锆陶瓷及其力学性能研究[J]. 无机材料学报, 2021, 36(4): 436-442. ZHANG L, YANG X F, XU X W, et al. 3D printed zirconia ceramics via fused deposit modeling and its mechanical properties[J]. Journal of Inorganic Materials, 2021, 36(4): 436-442 (in Chinese). [25] ABDUL I M, KUMAR S K, JANI S P, et al. Mechanical properties of carbon particle mixed polylactic acid via fused deposition modeling[J]. Materials Today: Proceedings, 2021, 46: 8590-8593. [26] 杨钦杰, 李佳汶, 李 明, 等. 熔融沉积3D打印设备研究进展[J]. 中国塑料, 2022, 36(2): 157-171. YANG Q J, LI J W, LI M, et al. Research progress in fused deposition modeling 3D printing equipment[J]. China Plastics, 2022, 36(2): 157-171 (in Chinese). [27] 邸浩翔, 张琪琪, 安晓光, 等. 3D打印陶瓷技术的研究进展[J]. 山东陶瓷, 2018, 41(3): 18-24. DI H X, ZHANG Q Q, AN X G, et al. Research progress of 3D printing ceramics[J]. Shandong Ceramics, 2018, 41(3): 18-24 (in Chinese). [28] 梁 栋, 何汝杰, 方岱宁. 陶瓷材料与结构增材制造技术研究现状[J]. 现代技术陶瓷, 2017, 38(4): 231-247. LIANG D, HE R J, FANG D N. Development of additive manufacturing of ceramics[J]. Advanced Ceramics, 2017, 38(4): 231-247 (in Chinese). [29] ZHENG W, WU J M, CHEN S, et al. Preparation of high-performance silica-based ceramic cores with B4C addition using selective laser sintering and SiO2-Al2O3 sol infiltration[J]. Ceramics International, 2023, 49(4): 6620-6629. [30] ZHAO T Y, WU W, HU H B, et al. The piperazine pyrophosphate intumescent flame retardant of polypropylene composites prepared by selective laser sintering[J]. Polymer Composites, 2023, 44(1): 305-317. [31] 付旻慧. SiC零件的激光选区烧结及反应烧结后处理工艺关键技术研究[D]. 武汉: 华中科技大学, 2017. FU M H. Research of silicon carbide components via selective laser sintering combined with reaction sintering[D].Wuhan: Huazhong University of Science and Technology, 2017 (in Chinese). [32] ZHENG W, WU J M, CHEN S, et al. Fabrication of high-performance silica-based ceramic cores through selective laser sintering combined with vacuum infiltration[J]. Additive Manufacturing, 2021, 48: 102396. [33] 颜永年, 荆 红, 张定军, 等. 计算机集成激光三维增材成形制造平台[J]. 电加工与模具, 2014(3): 1-7. YAN Y N, JING H, ZHANG D J, et al. Laser three-dimensional additive forming manufacturing platform by computer integrating for LCD-SLM-SLS[J]. Electromachining & Mould, 2014(3): 1-7 (in Chinese). [34] 孔祥忠. SLA光固化3D打印成型技术研究[J]. 中国设备工程, 2021(11): 207-208. KONG X Z. Research on SLA photocuring 3D printing forming technology[J]. China Plant Engineering, 2021(11): 207-208 (in Chinese). [35] 靳逸飞, 丁永春, 温家浩. 立体光固化增材制造技术应用现状及展望[J]. 金属加工(热加工), 2023(3): 18-23. JIN Y F, DING Y C, WEN J H. Application status and prospect of stereo lithography appearance additive manufacture technology[J]. MW Metal Forming, 2023(3): 18-23 (in Chinese). [36] LEWIS J A. Direct-write assembly of ceramics from colloidal inks[J]. Current Opinion in Solid State and Materials Science, 2002, 6(3): 245-250. [37] SANTOLIQUIDO O, COLOMBO P, ORTONA A. Additive manufacturing of ceramic components by digital light processing: a comparison between the “bottom-up” and the “top-down” approaches[J]. Journal of the European Ceramic Society, 2019, 39(6): 2140-2148. [38] 方浩博, 陈继民. 基于数字光处理技术的3D打印技术[J]. 北京工业大学学报, 2015, 41(12): 1775-1782. FANG H B, CHEN J M. 3D printing based on digital light processing technology[J]. Journal of Beijing University of Technology, 2015, 41(12): 1775-1782 (in Chinese). [39] JANG K J, KANG J H, FISHER J G, et al. Effect of the volume fraction of zirconia suspensions on the microstructure and physical properties of products produced by additive manufacturing[J]. Dental Materials, 2019, 35(5): e97-e106. [40] 陈 龙, 王正上, 崔旭东. 氧化铝陶瓷光固化浆料的制备及脱脂工艺优化研究[J]. 四川大学学报(自然科学版), 2022, 59(4): 145-152. CHEN L, WANG Z S, CUI X D. 3D printing of shape-controllable alumina ceramics by using optimized slurry and sintering process[J]. Journal of Sichuan University (Natural Science Edition), 2022, 59(4): 145-152 (in Chinese). [41] 郑江涛, 卢 晶, 王胜佳, 等. ZTA陶瓷光固化3D打印浆料设计及理化性能研究[J]. 陶瓷学报, 2022, 43(2): 227-235. ZHENG J T, LU J, WANG S J, et al. Design and physicochemical properties of UV curable ZTA ceramic paste[J]. Journal of Ceramics, 2022, 43(2): 227-235 (in Chinese). [42] CHEN Z W, LI J J, LIU C B, et al. Preparation of high solid loading and low viscosity ceramic slurries for photopolymerization-based 3D printing[J]. Ceramics International, 2019, 45(9): 11549-11557. [43] 顾凯杰. 氧化锆陶瓷浆料制备及其光固化增材制造研究[D]. 南京: 南京航空航天大学, 2019. GU K J. Research on zirconia slurry preparation and process of zirconia ceramics fabricated via DLP additive manufacturing[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2019 (in Chinese). [44] LIU S Y, CHEN Y J, LU P, et al. Si3N4 slurry with high solid phase, low viscosity prepared via surface-oxidation and silane coupling agent modification hybrid method[J]. Journal of the European Ceramic Society, 2024, 44(1): 161-172. [45] 刘丹丹, 李 芳, 张小敏, 等. 光固化3D打印用于陶瓷制备的研究进展[J]. 杭州师范大学学报(自然科学版), 2019, 18(6): 576-580. LIU D D, LI F, ZHANG X M, et al. Research progress in the ceramic production by stereolithography 3D printing[J]. Journal of Hangzhou Normal University (Natural Science Edition), 2019, 18(6): 576-580 (in Chinese). [46] 裘芸寧, 胡可辉, 吕志刚. 基于光固化增材制造技术的陶瓷成形方法[J]. 精密成形工程, 2020, 12(5): 117-121. QIU Y N, HU K H, LYU Z G. Ceramic forming method based on sterolighography additive manufacturing[J]. Journal of Netshape Forming Engineering, 2020, 12(5): 117-121 (in Chinese). [47] MU Y H, CHEN J W, AN X L, et al. Effect of synergism of solid loading and sintering temperature on microstructural evolution and mechanical properties of 60 vol% high solid loading ceramic core obtained through stereolithography 3D printing[J]. Journal of the European Ceramic Society, 2023, 43(2): 661-675. [48] 王 卿, 鲍崇高, 李世佳, 等. 硅藻土光固化成型浆料和多孔陶瓷的制备[J]. 硅酸盐通报, 2022, 41(4): 1416-1422. WANG Q, BAO C G, LI S J, et al. Fabrication of diatomite slurries and diatomite porous ceramics based on stereo lithography apparatus[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(4): 1416-1422 (in Chinese). [49] RAO W D, LIU Y, CHENG L J, et al. Densification mechanism of stereolithographical dense Si3N4 ceramics with CeO2 as sintering additive by field assisted sintering[J]. Journal of Central South University, 2021, 28(4): 1233-1243. [50] 陈 芬, 吴亚茹, 朱 皓, 等. 氧化锆生物陶瓷的立体光固化制备及其力学与生物性能[J]. 硅酸盐学报, 2021, 49(9): 1837-1845. CHEN F, WU Y R, ZHU H, et al. Mechanical and biological properties of ZrO2 bioceramics by stereolithography technique[J]. Journal of the Chinese Ceramic Society, 2021, 49(9): 1837-1845 (in Chinese). [51] LIANG J W, LIU W, YANG G, et al. Rapid preparation of hierarchically porous ceramic microspheres based on UV-curing-assisted molding[J]. Journal of the European Ceramic Society, 2021, 41(16): 232-238. [52] LI Q L, QIU Y X, HOU W Q, et al. Slurry flow characteristics control of 3D printed ceramic core layered structure: experiment and simulation[J]. Journal of Materials Science & Technology, 2023, 164: 215-228. [53] 黄天成, 顾 海, 张 捷, 等. 浆料直写陶瓷3D打印挤出环节的流动分析研究[J]. 机械设计与制造, 2021(10): 138-140+144. HUANG T C, GU H, ZHANG J, et al. Research on flow analysis of extruding process in direct ink writing ceramics 3D printing[J]. Machinery Design & Manufacture, 2021(10): 138-140+144 (in Chinese). [54] 刘 杰. 基于3D打印模具和注凝成型的多孔陶瓷制备工艺研究[D]. 无锡: 江南大学, 2021. LIU J. Study on forming process of porous ceramics based on 3D printing mould combined with gelcasting[D].Wuxi: Jiangnan University, 2021 (in Chinese). [55] ZHANG G X, ZOU B, WANG X F, et al. Design, manufacturing and properties of controllable porosity of ceramic filters based on SLA-3D printing technology[J]. Ceramics International, 2023, 49(1): 1009-1019. [56] 夏 雪. 浅谈我国3D打印陶瓷材料及产业化发展[J]. 陶瓷, 2017(5): 9-12. XIA X. Introduction to 3D printing ceramic materials and industrialiazation develpoment in China[J]. Ceramics, 2017(5): 9-12 (in Chinese). [57] 陈 鑫. 光固化3D打印氧化硅基陶瓷型芯的纳米改性研究[D]. 西安: 长安大学, 2021. CHEN X. Research on nano-modification of light-cured 3D printing silicon oxide-based ceramic core[D]. Xi’an: Changan University, 2021 (in Chinese). [58] XU X Q, NIU S X, WANG X G, et al. Fabrication and casting simulation of composite ceramic cores with silica nanopowders[J]. Ceramics International, 2019, 45(15): 19283-19288. [59] 王守兴, 李 伶, 毕鲁南, 等. 大壁厚3D打印SiO2陶瓷快速制备技术研究[J]. 硅酸盐通报, 2021, 40(6): 1943-1949. WANG S X, LI L, BI L N, et al. Rapid preparation of thick-walled 3D printing silica ceramics[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(6): 1943-1949 (in Chinese). [60] DONG X J, WU J Q, ZHOU Q, et al. Mechanical and dielectric properties of Si3N4-SiO2 ceramics prepared by digital light processing based 3D printing and oxidation sintering[J]. Ceramics International, 2023, 49(18): 29699-29708. [61] 陈典典, 鲍明东, 李 鑫, 等. 3D打印氧化硅基陶瓷型芯的各向异性研究[J]. 中国陶瓷, 2020, 56(5): 33-39. CHEN D D, BAO M D, LI X, et al. Research on anisotropy of 3D printed silicon oxide-based ceramic cores[J]. China Ceramics, 2020, 56(5): 33-39 (in Chinese). [62] LOPEZ-ALVAREZ M, SERRA J, DE A, et al. Marine-based carbon and silicon carbide scaffolds with patterned surface for tissue engineering applications[M]//SIKALIDIS C, ed. Advances in Ceramics-Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment. InTech, 2011. [63] DING G J, HE R J, ZHANG K Q, et al. Stereolithography 3D printing of SiC ceramic with potential for lightweight optical mirror[J]. Ceramics International, 2020, 46(11): 18785-18790. [64] CAO J W, MIAO K, XIONG S F, et al. 3D printing and in situ transformation of SiCnw/SiC structures[J]. Additive Manufacturing, 2022, 58: 103053. [65] LI F F, ZHU M, CHEN J, et al. High-strength and low-silicon SiC ceramics prepared by extrusion molding 3D printing[J]. Journal of the European Ceramic Society, 2024, 44(2): 617-625. [66] 徐海超. SiC陶瓷基复合材料的3D打印关键技术研究[D]. 济南: 山东大学, 2022. XU H C. Research on key technologies of 3D printing of SiC ceramic matrix composites [D]. Jinan: Shandong University, 2022 (in Chinese). [67] GONZÁLEZ P, BORRAJO J P, SERRA J, et al. Extensive studies on biomorphic SiC ceramics properties for medical applications[J]. Key Engineering Materials, 2003, 254/255/256: 1029-1032. [68] XU M, GIRISH Y R, RAKESH K P, et al. Recent advances and challenges in silicon carbide (SiC) ceramic nanoarchitectures and their applications[J]. Materials Today Communications, 2021, 28: 102533. [69] 张小锋, 于国强, 姜林文. 氧化铝陶瓷的应用[J]. 佛山陶瓷, 2010, 20(2): 38-43. ZHANG X F, YU G Q, JIANG L W. Application of alumina ceramic[J]. Foshan Ceramics, 2010, 20(2): 38-43 (in Chinese). [70] 范 江. 基于剪切变稀DIW 3D打印Al2O3复合材料及其性能研究[D]. 太原: 中北大学, 2023. FAN J. Study on printing Al2O3 composites based on shear thinning DIW 3D and its properties[D]. Taiyuan: North University of China, 2023 (in Chinese). [71] WU H D, LIU W, LIN L F, et al. Realization of complex-shaped and high-performance alumina ceramic cutting tools via vat photopolymerization based 3D printing: a novel surface modification strategy through coupling agents aluminic acid ester and silane coupling agent[J]. Journal of the European Ceramic Society, 2023, 43(3): 1051-1063. [72] LI H, LIU Y S, LIU Y S, et al. Silica strengthened alumina ceramic cores prepared by 3D printing[J]. Journal of the European Ceramic Society, 2021, 41(4): 2938-2947. [73] 郭金玉, 谢呵瀚, 杨小乐, 等. 凝胶3D打印制备细晶氧化铝陶瓷研究[J]. 硅酸盐通报, 2021, 40(6): 1927-1936. GUO J Y, XIE H H, YANG X L, et al. Preparation of fine-grained alumina ceramics by gel 3D printing[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(6): 1927-1936 (in Chinese). [74] LEE G, CARRILLO M, MCKITTRICK J, et al. Fabrication of ceramic bone scaffolds by solvent jetting 3D printing and sintering: towards load-bearing applications[J]. Additive Manufacturing, 2020, 33: 101107. [75] CHEN X J, LI Y M, ZHAO G R. Preparation and characterization of 3D printed ZrO2 ceramic parts fabricated by powder extrusion printing[J]. Ceramics International, 2023, 49(2): 2721-2729. [76] 郭 亮, 金而立, 苏嘉敏, 等. 氧化锆陶瓷DLP 3D打印技术研究[J]. 应用激光, 2020, 40(6): 1040-1044. GUO L, JIN E L, SU J M, et al. Light curing 3D printing technology of zirconia ceramic[J]. Applied Laser, 2020, 40(6): 1040-1044 (in Chinese). [77] WANG H, SHEN F, LI Z, et al. Preparation of high-performance ZrO2 bio-ceramics by stereolithography for dental restorations[J]. Ceramics International, 2023, 49(17): 28048-28061. [78] HE R X, LIU W, WU Z W, et al. Fabrication of complex-shaped zirconia ceramic parts via a DLP- stereolithography-based 3D printing method[J]. Ceramics International, 2018, 44(3): 3412-3416. [79] YAJIMA S, HAYASHI J, OMORI M, et al. Development of a silicon carbide fibre with high tensile strength[J]. Nature, 1976, 261: 683-685. [80] LI S, DUAN W Y, ZHAO T, et al. The fabrication of SiBCN ceramic components from preceramic polymers by digital light processing (DLP) 3D printing technology[J]. Journal of the European Ceramic Society, 2018, 38(14): 4597-4603. [81] 王欣宇. 基于有机前驱体3D打印SiC陶瓷的研究[D]. 沈阳: 辽宁大学, 2023. WANG X Y. Study on 3D printing SiC ceramics based on organic precursors[D]. Shenyang: Liaoning University, 2023 (in Chinese). [82] XING R Z, XU G X, QU N, et al. 3D printing of liquid-metal-in-ceramic metamaterials for high-efficient microwave absorption[J]. Advanced Functional Materials, 2023: 2307499. [83] SHAO H F, HE Y, FU J Z, et al. 3D printing magnesium-doped wollastonite/β-TCP bioceramics scaffolds with high strength and adjustable degradation[J]. Journal of the European Ceramic Society, 2016, 36(6): 1495-1503. [84] BIN S S, KEONG T K, CHENG C H, et al. Tricalcium phosphate/hydroxyapatite (TCP-HA) bone scaffold as potential candidate for the formation of tissue engineered bone[J]. The Indian Journal of Medical Research, 2013, 137(6): 1093-1101. [85] JARAMILLO N, MORENO A, OSPINA V, et al. Effect of synthesis on the antimicrobial response of β-TCP/Mg with potential applications in the regeneration of dental tissue: 3D printing of ceramic paste in a β-TCP/Mg/bioglass system[J]. Materials Letters, 2023, 350: 134907. [86] LIU S, MO L N, BI G Y, et al. DLP 3D printing porous β-tricalcium phosphate scaffold by the use of acrylate/ceramic composite slurry[J]. Ceramics International, 2021, 47(15): 21108-21116. [87] ZHANG Y H, ZHANG Q, HE F P, et al. Fabrication of cancellous-bone-mimicking β-tricalcium phosphate bioceramic scaffolds with tunable architecture and mechanical strength by stereolithography 3D printing[J]. Journal of the European Ceramic Society, 2022, 42(14): 6713-6720. [88] WANG Y, YUAN X Y, YE J D, et al. Effects of zinc/gallium dual doping on the physicochemical properties and cell response of 3D printed β-tricalcium phosphate ceramic scaffolds[J]. Ceramics International, 2022, 48(19): 28557-28564. [89] LI X, ZHANG H, SHEN Y F, et al. Fabrication of porous β-TCP/58S bioglass scaffolds via top-down DLP printing with high solid loading ceramic-resin slurry[J]. Materials Chemistry and Physics, 2021, 267: 124587. [90] 李 虎. 3D打印生物β-TCP/TiO2陶瓷支架的制备与性能研究[D]. 成都: 成都大学, 2022. LI H. Preparation and properties of 3D printed biological β-TCP/TiO2 ceramic scaffold[D]. Chengdu: Chengdu University, 2022 (in Chinese). [91] CHEN X F, CAO Q R, CHEN T, et al. 3D printing for precision construction of ceramic membranes: current status, challenges, and prospects[J]. Advanced Membranes, 2023, 3: 100068. [92] 纪宏超, 张雪静, 裴未迟, 等. 陶瓷3D打印技术及材料研究进展[J]. 材料工程, 2018, 46(7): 19-28. JI H C, ZHANG X J, PEI W C, et al. Research progress in ceramic 3D printing technology and material development[J]. Journal of Materials Engineering, 2018, 46(7): 19-28 (in Chinese). [93] 杨 璟, 端木晨雪, 周子钰. 3D打印陶瓷材料技术研究进展[J]. 机械研究与应用, 2023, 36(4): 182-186. YANG J, DUANMU C X, ZHOU Z Y. Current advances in 3D printing ceramic materials[J]. Mechanical Research & Application, 2023, 36(4): 182-186 (in Chinese). [94] CHEN Z W, LI Z Y, LI J J, et al. 3D printing of ceramics: a review[J]. Journal of the European Ceramic Society, 2019, 39(4): 661-687. |
[1] | 申天姿, 李文凤, 郭会师, 曹金金, 侯永改, 杜娟. Al2O3粒度对CA6轻质陶瓷材料结构与性能的影响[J]. 硅酸盐通报, 2024, 43(6): 2250-2255. |
[2] | 薛伟, 董天源, 黄晨, 侯智善, 曹宇, 魏鑫磊. SLA打印制备融合TPMS氧化铝陶瓷支架结构优化设计研究[J]. 硅酸盐通报, 2024, 43(5): 1784-1795. |
[3] | 缪新宇, 陆萍, 刘双宇, 李尹豪, 张福隆, 李亮, 张浩立. 光固化氧化铝陶瓷浆料流变性能研究进展[J]. 硅酸盐通报, 2023, 42(2): 708-718. |
[4] | 刘文进, 周国相, 林坤鹏, 张砚召, 赵哲, 杨治华, 贾德昌, 周玉. 基于浆料形态的陶瓷3D打印技术的浆料体系研究进展[J]. 硅酸盐通报, 2021, 40(6): 1918-1926. |
[5] | 谢济励;高俊国. 基于空气耦合超声波的非金属陶瓷材料检测研究[J]. 硅酸盐通报, 2018, 37(6): 1989-1994. |
[6] | 石新正;王立志;马德军;宫雷;孙亮;陈伟. 基于尖锐四棱锥压头的陶瓷材料断裂韧性测试方法[J]. 硅酸盐通报, 2018, 37(11): 3438-3443. |
[7] | 严春雷;袁蓓;查柏林. 超高温陶瓷材料研究进展[J]. 硅酸盐通报, 2017, 36(11): 3703-3707. |
[8] | 殷增斌;袁军堂;程寓;汪振华;胡小秋. 陶瓷材料微波烧结工艺与机理研究现状[J]. 硅酸盐通报, 2016, 35(5): 1492-1497. |
[9] | 闫存富;李淑娟;杨磊鹏. 陶瓷材料零件低温挤压成型工艺挤出过程研究[J]. 硅酸盐通报, 2015, 34(11): 3073-3077. |
[10] | 王峰;钱学强;李小伟;韦国静;韩召;叶建克;陈义祥;李江涛. 高红外辐射陶瓷材料的研究进展[J]. 硅酸盐通报, 2015, 34(1): 143-148. |
[11] | 刘威;刘婷婷;廖文和;张凯. 陶瓷材料选择性激光烧结/熔融技术研究与应用现状[J]. 硅酸盐通报, 2014, 33(11): 2881-2890. |
[12] | 丁明伟;张政梅. SiC/(W,Ti)C陶瓷喷嘴材料的制备及其性能[J]. 硅酸盐通报, 2013, 32(10): 1998-2002. |
[13] | 唐竹兴;杨晴晴;杨赞中. MoSi_2对注凝成型HfB2超高温陶瓷材料性能的影响[J]. 硅酸盐通报, 2009, 28(5): 930-934. |
[14] | 于成龙;王秀峰;李建立;江红涛;王国文. 特种陶瓷胶态成型技术中的干燥理论及应用[J]. 硅酸盐通报, 2008, 27(2): 329-333. |
[15] | 税安泽;夏海斌;曾令可;程小苏;王慧;刘平安;金雪莉;吴细桂;简润桐. 利用抛光砖废料制备多孔保温建筑材料[J]. 硅酸盐通报, 2008, 27(1): 191-195. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||