[1] TYUGANOVA M A, ZUBKOVA N S, BUTYLKINA N G. Polymeric fibre materials with low combustibility: a review[J]. Fibre Chemistry, 1994, 26(5): 294-305. [2] XUE W J, YI J, XIE Z P, et al. Enhanced fracture toughness of silicon nitride ceramics at cryogenic temperatures[J]. Scripta Materialia, 2012, 66(11): 891-894. [3] KRSTIC Z, KRSTIC V D. Silicon nitride: the engineering material of the future[J]. Journal of Materials Science, 2012, 47(2): 535-552. [4] ZHOU Y, HYUGA H, KUSANO D, et al. Development of high-thermal-conductivity silicon nitride ceramics[J]. Journal of Asian Ceramic Societies, 2015, 3(3): 221-229. [5] BOCANEGRA-BERNAL M H, MATOVIC B. Mechanical properties of silicon nitride-based ceramics and its use in structural applications at high temperatures[J]. Materials Science and Engineering: A, 2010, 527(6): 1314-1338. [6] YANG Y, SONG X, LI X J, et al. Recent progress in biomimetic additive manufacturing technology: from materials to functional structures[J]. Advanced Materials, 2018, 30(36): 1706539. [7] CHEN Z W, LI Z Y, LI J J, et al. 3D printing of ceramics: a review[J]. Journal of the European Ceramic Society, 2019, 39(4): 661-687. [8] ABOULIATIM Y, CHARTIER T, ABELARD P, et al. Optical characterization of stereolithography alumina suspensions using the Kubelka-Munk model[J]. Journal of the European Ceramic Society, 2009, 29(5): 919-924. [9] ZOCCA A, COLOMBO P, GOMES C M, et al. Additive manufacturing of ceramics: issues, potentialities, and opportunities[J]. Journal of the American Ceramic Society, 2015, 98(7): 1983-2001. [10] 王 飞, 李 伶, 宋 涛, 等. 基于熔融沉积技术的多孔氮化硅陶瓷制备与烧结研究[J]. 现代技术陶瓷, 2023, 44(增刊1): 461-472. WANG F, LI L, SONG T, et al. Study on preparation and sintering of porous silicon nitride ceramics based on fused deposition technology[J]. Advanced Ceramics, 2023, 44(supplement 1): 461-472 (in Chinese). [11] DONG X J, WU J Q, YU H L, et al. Additive manufacturing of silicon nitride ceramics: a review of advances and perspectives[J]. International Journal of Applied Ceramic Technology, 2022, 19(6): 2929-2949. [12] ZANCHETTA E, CATTALDO M, FRANCHIN G, et al. Stereolithography of SiOC ceramic microcomponents[J]. Advanced Materials, 2016, 28(2): 370-376. [13] ZHANG K Q, HE R J, XIE C, et al. Photosensitive ZrO2 suspensions for stereolithography[J]. Ceramics International, 2019, 45(9): 12189-12195. [14] SUN J X, BINNER J, BAI J M. Effect of surface treatment on the dispersion of nano zirconia particles in non-aqueous suspensions for stereolithography[J]. Journal of the European Ceramic Society, 2019, 39(4): 1660-1667. [15] SUN J X, BINNER J, BAI J M. 3D printing of zirconia via digital light processing: optimization of slurry and debinding process[J]. Journal of the European Ceramic Society, 2020, 40(15): 5837-5844. [16] ZHANG K Q, MENG Q Y, ZHANG X Q, et al. Roles of solid loading in stereolithography additive manufacturing of ZrO2 ceramic[J]. International Journal of Refractory Metals and Hard Materials, 2021, 99: 105604. [17] HAN Z Q, LIU S H, QIU K, et al. The enhanced ZrO2 produced by DLP via a reliable plasticizer and its dental application[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 141: 105751. [18] WANG Y, ZHOU Q X, HAN Z Q, et al. Towards high strengthening efficiency of equiaxed and platelet-shaped alumina reinforced zirconia ceramics with textured microstructure using DLP-based stereolithography[J]. Ceramics International, 2024, 50(1): 2467-2478. [19] XING H Y, ZOU B, LAI Q G, et al. Preparation and characterization of UV curable Al2O3 suspensions applying for stereolithography 3D printing ceramic microcomponent[J]. Powder Technology, 2018, 338: 153-161. [20] ZHANG S, SHA N, ZHAO Z. Surface modification of α-Al2O3 with dicarboxylic acids for the preparation of UV-curable ceramic suspensions[J]. Journal of the European Ceramic Society, 2017, 37(4): 1607-1616. [21] GU Y, DUAN W Y, WANG T C, et al. Additive manufacturing of Al2O3 ceramic core with applicable microstructure and mechanical properties via digital light processing of high solid loading slurry[J]. Ceramics International, 2023, 49(15): 25216-25224. [22] GU Q C, SUN L, JI X Y, et al. High-performance and high-precision Al2O3 architectures enabled by high-solid-loading, graphene-containing slurries for top-down DLP 3D printing[J]. Journal of the European Ceramic Society, 2023, 43(1): 130-142. [23] XU X H, ZHOU S X, WU J F, et al. Inter-particle interactions of alumina powders in UV-curable suspensions for DLP stereolithography and its effect on rheology, solid loading, and self-leveling behavior[J]. Journal of the European Ceramic Society, 2021, 41(4): 2763-2774. [24] WANG Y Y, WANG Z Y, LIU S H, et al. Additive manufacturing of silica ceramics from aqueous acrylamide based suspension[J]. Ceramics International, 2019, 45(17): 21328-21332. [25] KÓCS L, TEGZE B, ALBERT E, et al. Ammonia-vapour-induced two-layer transformation of mesoporous silica coatings on various substrates[J]. Vacuum, 2021, 192: 110415. [26] BAE C J, KIM D, HALLORAN J W. Mechanical and kinetic studies on the refractory fused silica of integrally cored ceramic mold fabricated by additive manufacturing[J]. Journal of the European Ceramic Society, 2019, 39(2/3): 618-623. [27] 刘 雨, 陈张伟. 陶瓷光固化3D打印技术研究进展[J]. 材料工程, 2020, 48(9): 1-12. LIU Y, CHEN Z W. Research progress in photopolymerization-based 3D printing technology of ceramics[J]. Journal of Materials Engineering, 2020, 48(9): 1-12 (in Chinese). [28] HINCZEWSKI C, CORBEL S, CHARTIER T. Ceramic suspensions suitable for stereolithography[J]. Journal of the European Ceramic Society, 1998, 18(6): 583-590. [29] 顾 玥, 王 功, 段文艳, 等. 陶瓷光固化成型技术的应用与展望[J]. 硅酸盐学报, 2021, 49(5): 867-877. GU Y, WANG G, DUAN W Y, et al. Application and prospect of photopolymerization technologies for ceramics[J]. Journal of the Chinese Ceramic Society, 2021, 49(5): 867-877 (in Chinese). [30] ZAKERI S, VIPPOLA M, LEVÄNEN E. A comprehensive review of the photopolymerization of ceramic resins used in stereolithography[J]. Additive Manufacturing, 2020, 35: 101177. [31] 杨 勇, 郭啸天, 唐 杰, 等. 非氧化物陶瓷光固化增材制造研究进展及展望[J]. 无机材料学报, 2022, 37(3): 267-277. YANG Y, GUO X T, TANG J, et al. Research progress and prospects of non-oxide ceramic in stereolithography additive manufacturing[J]. Journal of Inorganic Materials, 2022, 37(3): 267-277 (in Chinese). [32] 韩卓群, 李 伶, 刘时浩, 等. 光固化ZrO2陶瓷料浆的流变性能研究[J]. 硅酸盐通报, 2021, 40(6): 1965-1971. HAN Z Q, LI L, LIU S H, et al. Research on rheological properties of stereolithography ZrO2 ceramic slurry[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(6): 1965-1971 (in Chinese). [33] SUBBANNA M, KAPUR P C, PRADIP. Role of powder size, packing, solid loading and dispersion in colloidal processing of ceramics[J]. Ceramics International, 2002, 28(4): 401-405. [34] GRIFFITH M L, HALLORAN J W. Freeform fabrication of ceramics via stereolithography[J]. Journal of the American Ceramic Society, 1996, 79(10): 2601-2608. [35] LIU S, MO L N, BI G Y, et al. DLP 3D printing porous β-tricalcium phosphate scaffold by the use of acrylate/ceramic composite slurry[J]. Ceramics International, 2021, 47(15): 21108-21116. [36] LIN L F, WU H D, XU Y R, et al. Fabrication of dense aluminum nitride ceramics via digital light processing-based stereolithography[J]. Materials Chemistry and Physics, 2020, 249: 122969. [37] LIU Y, ZHAN L N, HE Y, et al. Stereolithographical fabrication of dense Si3N4 ceramics by slurry optimization and pressure sintering[J]. Ceramics International, 2020, 46(2): 2063-2071. [38] HALLORAN J W. Ceramic stereolithography: additive manufacturing for ceramics by photopolymerization[J]. Annual Review of Materials Research, 2016, 46: 19-40. [39] MU Y H, CHEN J W, AN X L, et al. Effect of synergism of solid loading and sintering temperature on microstructural evolution and mechanical properties of 60vol% high solid loading ceramic core obtained through stereolithography 3D printing[J]. Journal of the European Ceramic Society, 2023, 43(2): 661-675. [40] GRIFFITH M L, HALLORAN J W. Scattering of ultraviolet radiation in turbid suspensions[J]. Journal of Applied Physics, 1997, 81(6): 2538-2546. [41] LI X B, ZHANG J X, DUAN Y S, et al. Rheology and curability characterization of photosensitive slurries for 3D printing of Si3N4 ceramics[J]. Applied Sciences, 2020, 10(18): 6438. [42] HUANG R J, JIANG Q G, WU H D, et al. Fabrication of complex shaped ceramic parts with surface-oxidized Si3N4 powder via digital light processing based stereolithography method[J]. Ceramics International, 2019, 45(4): 5158-5162. [43] LI Y H, HUANG S W, WANG S L, et al. Research on the effects of surface modification of ceramic powder on cure performance during digital light processing (DLP)[J]. Ceramics International, 2022, 48(3): 3652-3658. [44] LIU Y, CHENG L J, LI H, et al. Formation mechanism of stereolithography of Si3N4 slurry using silane coupling agent as modifier and dispersant[J]. Ceramics International, 2020, 46(10): 14583-14590. [45] LI M, HUANG H L, WU J M, et al. Preparation and properties of Si3N4 ceramics via digital light processing using Si3N4 powder coated with Al2O3-Y2O3 sintering additives[J]. Additive Manufacturing, 2022, 53: 102713. [46] LIU Y, ZHAN L N, WEN L, et al. Effects of particle size and color on photocuring performance of Si3N4 ceramic slurry by stereolithography[J]. Journal of the European Ceramic Society, 2021, 41(4): 2386-2394. [47] HUANG S W, LI Y H, YANG P, et al. Cure behaviour and mechanical properties of Si3N4 ceramics with bimodal particle size distribution prepared using digital light processing[J]. Ceramics International, 2023, 49(8): 12166-12172. [48] LIN L F, WU H D, HUANG Z Q, et al. Effect of monomers with different functionalities on stability, rheology, and curing behavior of ceramic suspensions[J]. Materials Chemistry and Physics, 2022, 275: 125243. [49] ZOU W J, YANG P, LIN L F, et al. Improving cure performance of Si3N4 suspension with a high refractive index resin for stereolithography-based additive manufacturing[J]. Ceramics International, 2022, 48(9): 12569-12577. [50] CAO C R, WANG C, ZHAO Z. Optimization of curing behavior of Si3N4 UV resin for photopolymerization 3D printing[J]. IOP Conference Series: Materials Science and Engineering, 2019, 678(1): 012013. [51] SHEN M H, FU R L, LIU H B, et al. Photosensitive Si3N4 slurry with combined benefits of low viscosity and large cured depth for digital light processing 3D printing[J]. Journal of the European Ceramic Society, 2023, 43(3): 881-888. [52] CHEN R F, DUAN W Y, WANG G, et al. Preparation of broadband transparent Si3N4-SiO2 ceramics by digital light processing (DLP) 3D printing technology[J]. Journal of the European Ceramic Society, 2021, 41(11): 5495-5504. [53] TIAN C, WU J M, WU Y R, et al. Effect of polystyrene addition on properties of porous Si3N4 ceramics fabricated by digital light processing[J]. Ceramics International, 2023, 49(16): 27040-27049. [54] WU Y R, TIAN C, WU J M, et al. Influence of the content of polymethyl methacrylate on the properties of porous Si3N4 ceramics fabricated by digital light processing[J]. Ceramics International, 2023, 49(19): 31228-31235. [55] WU Y R, TIAN C, WU J M, et al. Influence of the ratio of sintering aids on the properties of porous Si3N4 ceramics fabricated by digital light processing[J]. Ceramics International, 2023, 49(20): 33004-33010. |