[1] LEE H W. Manufacture of optical glass[J]. Nature, 1942, 150: 214-215. [2] GERVAIS L, DE ROOIJ N, DELAMARCHE E. Microfluidic chips for point-of-care immunodiagnostics[J]. Advanced Materials, 2011, 23(24): H151-H176. [3] ELVIRA K S, SOLVAS X C I, WOOTTON R C R, et al. The past, present and potential for microfluidic reactor technology in chemical synthesis[J]. Nature Chemistry, 2013, 5: 905-915. [4] MACFARLANE A, MARTIN G. A world of glass[J]. Science, 2004, 305(5689): 1407-1408. [5] LI B N, LI Z J, COOPERSTEIN I, et al. Additive manufacturing of transparent multi-component nanoporous glasses[J]. Advanced Science, 2023, 10(35): e2305775. [6] PILKINGTON L A B. Review lecture: the float glass process[J]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 1969, 314(1516): 1-25. [7] 葛新庆, 刘 琎, 程肇琦, 等. 溢流法平板玻璃成形机理及控制研究[J]. 建筑玻璃与工业玻璃, 2022, 8: 7-9. GE X Q, LIU J, CHENG Z Q, et al. Research on forming mechanism and control of flat glass by overflow method[J]. Architectural and Industrial Glass, 2022, 8: 7-9 (in Chinese). [8] LIU C, QIAN B, NI R P, et al. 3D printing of multicolor luminescent glass[J]. RSC Advances, 2018, 8(55): 31564-31567. [9] LI Y, FENG Z Y, HUANG L J, et al. Additive manufacturing high performance graphene-based composites: a review[J]. Composites Part A: Applied Science and Manufacturing, 2019, 124: 105483. [10] MAYNARD A D. Navigating the fourth industrial revolution[J]. Nature Nanotechnology, 2015, 10: 1005-1006. [11] LI Y, FENG Z Y, HAO L, et al. A review on functionally graded materials and structures via additive manufacturing: from multi-scale design to versatile functional properties[J]. Advanced Materials Technologies, 2020, 5(6): 1900981. [12] KLEIN J, STERN M, FRANCHIN G, et al. Additive manufacturing of optically transparent glass[J]. 3D Printing and Additive Manufacturing, 2015, 2(3): 92-105. [13] LUO J J, GILBERT L J, QU C, et al. Additive manufacturing of transparent soda-lime glass using a filament-fed process[J]. Journal of Manufacturing Science and Engineering, 2017, 139(6): 061006. [14] PETERS D, DRALLMEIER J, BRISTOW D A, et al. Sensing and control in glass additive manufacturing[J]. Mechatronics, 2018, 56: 188-197. [15] NGUYEN D T, MEYERS C, YEE T D, et al. 3D-printed transparent glass[J]. Advanced Materials, 2017, 29(26): 1701181. [16] KOTZ F, ARNOLD K, BAUER W, et al. Three-dimensional printing of transparent fused silica glass[J]. Nature, 2017, 544: 337-339. [17] COOPERSTEIN I, SHUKRUN E, PRESS O, et al. Additive manufacturing of transparent silica glass from solutions[J]. ACS Applied Materials & Interfaces, 2018, 10(22): 18879-18885. [18] HONG Z H, YE P R, LOY D A, et al. High-precision printing of complex glass imaging optics with precondensed liquid silica resin[J]. Advanced Science, 2022, 9(18): 2105595. [19] DE MARZI A, GIOMETTI G, ERLER J, et al. Hybrid additive manufacturing for the fabrication of freeform transparent silica glass components[J]. Additive Manufacturing, 2022, 54: 102727. [20] TOOMBS J T, LUITZ M, COOK C C, et al. Volumetric additive manufacturing of silica glass with microscale computed axial lithography[J]. Science, 2022, 376(6590): 308-312. [21] LI M Z, YUE L, RAJAN A C, et al. Low-temperature 3D printing of transparent silica glass microstructures[J]. Science Advances, 2023, 9(40): 2958. [22] SHIM W. Apparatus and method for creating three-dimensional object: WO2014051250A1[P]. 2014-04-13. [23] TURNER B N, STRONG R, GOLD S A. A review of melt extrusion additive manufacturing processes: I. Process design and modeling[J]. Rapid Prototyping Journal, 2014, 20(3): 192-204. [24] CHOI Y H, KIM C M, JEONG H S, et al. Influence of bed temperature on heat shrinkage shape error in FDM additive manufacturing of the ABS-engineering plastic[J]. World Journal of Engineering and Technology, 2016, 4(3): 186-192. [25] SOARES J B, FINAMOR J, SILVA F P, et al. Analysis of the influence of polylactic acid (PLA) colour on FDM 3D printing temperature and part finishing[J]. Rapid Prototyping Journal, 2018, 24(8): 1305-1316. [26] FELISMINA R, SILVA M, MATEUS A, et al. Direct digital manufacturing: a challenge to the artistic glass production[J]. Springer International Publishing, 2017, 65: 221-231. [27] MADER M, HAMBITZER L, SCHLAUTMANN P, et al. Melt-extrusion-based additive manufacturing of transparent fused silica glass[J]. Advanced Science, 2021, 8(23): 2103180. [28] XIN C X, LI Z, HAO L, et al. A comprehensive review on additive manufacturing of glass: recent progress and future outlook[J]. Materials & Design, 2023, 227: 111736. [29] BAUDET E, LEDEMI Y, LAROCHELLE P, et al. 3D-printing of arsenic sulfide chalcogenide glasses[J]. Optical Materials Express, 2019, 9(5): 2307. [30] ZAKI R M, STRUTYNSKI C, KASER S, et al. Direct 3D-printing of phosphate glass by fused deposition modeling[J]. Materials & Design, 2020, 194: 108957. [31] TAO Y B, KONG F G, LI Z L, et al. A review on voids of 3D printed parts by fused filament fabrication[J]. Journal of Materials Research and Technology, 2021, 15: 4860-4879. [32] III J C, CALVERT P D. Freeforming objects with low-binder slurry: US6401795[P]. 2002-06-11. [33] CESARANO J I, BAER T A, CALVERT P. Recent developments in freeform fabrication of dense ceramics from slurry deposition[J]. Office of Scientific & Technical Information Technical Reports, 1997. [34] ROCHA V G, SAIZ E, TIRICHENKO I S, et al. Direct ink writing advances in multi-material structures for a sustainable future[J]. Journal of Materials Chemistry A, 2020, 8(31): 15646-15657. [35] DESTINO J F, DUDUKOVIC N A, JOHNSON M A, et al. 3D printed optical quality silica and silica-titania glasses from sol-gel feedstocks[J]. Advanced Materials Technologies, 2018, 3(6): 1700323. [36] SASAN K, LANGE A, YEE T D, et al. Additive manufacturing of optical quality germania-silica glasses[J]. ACS Applied Materials & Interfaces, 2020, 12(5): 6736-6741. [37] DYLLA-SPEARS R, YEE T D, SASAN K, et al. 3D printed gradient index glass optics[J]. Science Advances, 2020, 6(47): 7429. [38] SONG K K, YANG S D, WEI Y F, et al. Coaxially printed biomimetic BSPC with high strength and toughness[J]. Materials & Design, 2024, 238: 112648. [39] AN T, HWANG K T, KIM J H, et al. Extrusion-based 3D direct ink writing of NiZn-ferrite structures with viscoelastic ceramic suspension[J]. Ceramics International, 2020, 46(5): 6469-6476. [40] LUO J J, GILBERT L J, BRISTOW D A, et al. Additive manufacturing of glass for optical applications[C]//SPIE LASE. Proc SPIE 9738, Laser 3D Manufacturing III, San Francisco, California, USA. 2016, 9738: 123-131. [41] PROTASOV C E, KHMYROV R S, GRIGORIEV S N, et al. Selective laser melting of fused silica: interdependent heat transfer and powder consolidation[J]. International Journal of Heat and Mass Transfer, 2017, 104: 665-674. [42] KHMYROV R S, PROTASOV C E, GRIGORIEV S N, et al. Crack-free selective laser melting of silica glass: single beads and monolayers on the substrate of the same material[J]. The International Journal of Advanced Manufacturing Technology, 2016, 85(5): 1461-1469. [43] 陈定元, 刘 凯, 刘 超, 等. 3D打印制备碲酸盐玻璃及其成型工艺的研究[J]. 硅酸盐通报, 2019, 38(9): 2890-2894. CHEN D Y, LIU K, LIU C, et al. Preparation of tellurite glass by 3D printing and its forming process[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(9): 2890-2894 (in Chinese). [44] LIU K, XU J, GU X J, et al. Effects of raw material ratio and post-treatment on properties of soda lime glass-ceramics fabricated by selective laser sintering[J]. Ceramics International, 2020, 46(13): 20633-20639. [45] TAN C L, ZHOU K S, MA W Y, et al. Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel[J]. Materials & Design, 2017, 134: 23-34. [46] FRAZIER W E. Metal additive manufacturing: a review[J]. Journal of Materials Engineering and Performance, 2014, 23(6): 1917-1928. [47] GIBSON I, ROSEN D, STUCKER B. Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing[M]. New York: Springer New York, 2015. [48] RODRIGUES T A, DUARTE V, MIRANDA R M, et al. Current status and perspectives on wire and arc additive manufacturing (WAAM)[J]. Materials, 2019, 12(7): 1121. [49] WYSOCKI B, MAJ P, SITEK R, et al. Laser and electron beam additive manufacturing methods of fabricating titanium bone implants[J]. Applied Sciences, 2017, 7(7): 657. [50] LUO J J, HOSTETLER J M, GILBERT L, et al. Additive manufacturing of transparent fused quartz[J]. Optical Engineering, 2018, 57(4): 041408. [51] SVETLIZKY D, DAS M, ZHENG B L, et al. Directed energy deposition (DED) additive manufacturing: physical characteristics, defects, challenges and applications[J]. Materials Today, 2021, 49: 271-295. [52] HULL C W. Apparatus for production of three-dimensional objects by stereolithography: US4575330A[P]. 1984-08-08. [53] OUYANG M, ZHANG H, LI M J, et al. 3D printing of luminescent glass with controlled distribution of emission colors for multi-dimensional optical anti-counterfeiting[J]. Laser & Photonics Reviews, 2023, 17(8): 2300068. [54] AMBROSI A, PUMERA M. 3D-printing technologies for electrochemical applications[J]. Chemical Society Reviews, 2016, 45(10): 2740-2755. [55] NAKAMOTO T, YAMAGUCHI K, ABRAHA A P. Consideration on the producing of high aspect ratio micro parts using UV sensitive photopolymer[C]//MHS'96 Proceedings of the Seventh International Symposium on Micro Machine and Human Science. Nagoya, Japan. IEEE, 2002: 53-58. [56] BERTSCH A, ZISSI S, JÉZÉQUEL J Y, et al. Microstereophotolithography using a liquid crystal display as dynamic mask-generator[J]. Microsystem Technologies, 1997, 3(2): 42-47. [57] CAI P, GUO L, WANG H, et al. Effects of slurry mixing methods and solid loading on 3D printed silica glass parts based on DLP stereolithography[J]. Ceramics International, 2020, 46(10): 16833-16841. [58] MOORE D G, BARBERA L, MASANIA K, et al. Three-dimensional printing of multicomponent glasses using phase-separating resins[J]. Nature Materials, 2020, 19: 212-217. [59] MAO Q J, WANG Y F, LI Y, et al. Fabrication of liver microtissue with liver decellularized extracellular matrix (dECM) bioink by digital light processing (DLP) bioprinting[J]. Materials Science & Engineering C, Materials for Biological Applications, 2020, 109: 110625. [60] PARTHENOPOULOS D A, RENTZEPIS P M. Two-photon volume information storage in doped polymer systems[J]. Journal of Applied Physics, 1990, 68(11): 5814-5818. [61] MARUO S, NAKAMURA O, KAWATA S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization[J]. Opt Lett, 1997, 22: 132-134. [62] KOTZ F, QUICK A S, RISCH P, et al. Two-photon polymerization of nanocomposites for the fabrication of transparent fused silica glass microstructures[J]. Advanced Materials, 2021, 33(9): e2006341. [63] WEN X W, ZHANG B Y, WANG W P, et al. 3D-printed silica with nanoscale resolution[J]. Nature Materials, 2021, 20: 1506-1511. [64] HONG Z H, YE P R, LOY D A, et al. Three-dimensional printing of glass micro-optics[J]. Optica, 2021, 8(6): 904. [65] BAUER J, CROOK C, BALDACCHINI T. A sinterless, low-temperature route to 3D print nanoscale optical-grade glass[J]. Science, 2023, 380(6648): 960-966. [66] DOUALLE T, ANDRÉ J C, GALLAIS L. 3D printing of silica glass through a multiphoton polymerization process[J]. Optics Letters, 2021, 46(2): 364-367. [67] HUANG P H, LAAKSO M, EDINGER P, et al. Three-dimensional printing of silica glass with sub-micrometer resolution[J]. Nature Communications, 2023, 14: 3305. [68] MARSCHNER D E, PAGLIANO S, HUANG P H, et al. A methodology for two-photon polymerization micro 3D printing of objects with long overhanging structures[J]. Additive Manufacturing, 2023, 66: 103474. [69] YEUNG K W, DONG Y Q, CHEN L, et al. Printability of photo-sensitive nanocomposites using two-photon polymerization[J]. Nanotechnology Reviews, 2020, 9(1): 418-426. [70] WEISGRAB G, OVSIANIKOV A, COSTA P F. Functional 3D printing for microfluidic chips[J]. Advanced Materials Technologies, 2019, 4(10): 1900275. [71] GAL-OR E, GERSHONI Y, SCOTTI G, et al. Chemical analysis using 3D printed glass microfluidics[J]. Analytical Methods, 2019, 11(13): 1802-1810. |