[1] 张 涛. 配筋增强3D打印混凝土力学性能及若干优化分析[D]. 杭州: 浙江大学, 2022: 4-23. ZHANG T. Mechanical properties and optimization analysis of reinforced 3D printed concrete[D].Hangzhou: Zhejiang University, 2022: 4-23 (in Chinese). [2] NODEHI M, AGUAYO F, NODEHI S E, et al. Durability properties of 3D printed concrete (3DPC)[J]. Automation in Construction, 2022, 142: 104479. [3] 张 皓, 杜文风, 张 帆. 面向3D打印的纤维混凝土材料的发展现状[J]. 河南大学学报(自然科学版), 2020, 1(50): 108-117. ZHANG H, DU W F, ZHANG F. Development state of fiber reinforced concrete materials for 3D printing[J]. Journal of Henan University (Natural Science), 2020, 1(50): 108-117 (in Chinese). [4] 王海燕. 3D打印技术在工程建筑领域的应用及展望[J]. 江西建材, 2022(8): 5-8. WANG H Y. Application and perspective of 3D concrete printing technologies in architecture[J]. Jiangxi Building Materials, 2022(8): 5-8 (in Chinese). [5] 雷 斌, 马 勇, 熊悦辰, 等. 3D打印混凝土材料制备方法研究[J]. 混凝土, 2018(2): 145-149+153. LEI B, MA Y, XIONG Y C, et al. Study on preparation method of 3D printing concrete material[J]. Concrete, 2018(2): 145-149+153 (in Chinese). [6] 齐 甦, 李庆远, 崔小鹏, 等. 3D打印混凝土材料的研究现状与展望[J]. 混凝土, 2021(1): 36-39. QI S, LI Q Y, CUI X P, et al. Research status and prospect of 3D printed concrete materials[J]. Concrete, 2021(1): 36-39 (in Chinese). [7] 杜宇雷, 孙菲菲, 原 光, 等. 3D打印材料的发展现状[J]. 徐州工程学院学报(自然科学版), 2014, 29(1): 20-24. DU Y L, SUN F F, YUAN G, et al. Current status of materials for three-dimensional printing[J]. Journal of Xuzhou Institute of Technology (Natural Sciences Edition), 2014, 29(1): 20-24 (in Chinese). [8] DE SCHUTTER G, LESAGE K, MECHTCHERINE V, et al. Vision of 3D printing with concrete-technical, economic and environmental potentials[J]. Cement and Concrete Research, 2018, 112: 25-36. [9] 李森萍, 冯建行. 建筑复杂构件3D打印的传统工艺技术优化设计[J]. 粘接, 2022, 49(9): 111-114. LI S P, FENG J X. Optimization design of traditional technology for 3D printing of complex building components[J]. Adhesion, 2022, 49(9): 111-114 (in Chinese). [10] 刘天浩, 王 里, 李之建, 等. 混凝土3D打印加筋增韧方法研究进展[J]. 工业建筑, 2021, 51(6): 9-15. LIU T H, WANG L, LI Z J, et al. A review of incorporating reinforcement method in 3D concrete printing[J]. Industrial Construction, 2021, 51(6): 9-15 (in Chinese). [11] 万珂玥. 3D打印再生混凝土物理力学性质及其与钢筋的黏结性能研究[D]. 广东: 华南理工大学, 2021: 76-77. WAN K Y. Mechanical properties and bond performance with steel bars of 3D printing recycled concrete[D]. Guangdong: South China University of Technology, 2021: 76-77 (in Chinese). [12] GEBHARD L, ESPOSITO L, MENNA C, et al. Inter-laboratory study on the influence of 3D concrete printing set-ups on the bond behaviour of various reinforcements[J]. Cement and Concrete Composites, 2022, 133: 104660. [13] ASPRONE D, MENNA C, BOS F P, et al. Rethinking reinforcement for digital fabrication with concrete[J]. Cement and Concrete Research, 2018, 112: 111-121. [14] HACK N, LAUER W V. Mesh-mould: robotically fabricated spatial meshes as reinforced concrete formwork[J]. Architectural Design, 2014, 84(3): 44-53. [15] DING T, QIN F, XIAO J Z, et al. Experimental study on the bond behaviour between steel bars and 3D printed concrete[J]. Journal of Building Engineering, 2022, 49: 104105. [16] 彭子轩, 华 好. 钢筋混凝土梁的拓扑优化设计与3D打印模具[C]// 数智赋能:2022全国建筑院系建筑数字技术教学与研究学术研讨会论文集. 2022: 293-297. PENG Z X, HUA H. Topology optimization design and 3D printing mold of reinforced concrete beams[C]//Proceedings of the 2022 National Symposium on Teaching and Research of Digital Technology in Architecture of Architecture. 2022: 293-297 (in Chinese). [17] MAURYA S, DEY D, PANDA B, et al. Inline reinforcement of steel cable in 3D concrete printing[J]. Materials Today: Proceedings, 2023, 133: 1-6. [18] XIAO J Z, CHEN Z X, DING T, et al. Bending behaviour of steel cable reinforced 3D printed concrete in the direction perpendicular to the interfaces[J]. Cement and Concrete Composites, 2022, 125: 104313. [19] LIU M, WANG L, MA G W, et al. U-type steel wire mesh for the flexural performance enhancement of 3D printed concrete: a novel reinforcing approach[J]. Materials Letters, 2023, 331: 133429. [20] 崔永辉, 虞立果, 贾明印. 连续纤维增强PLA复合材料3D打印制备技术研究[J]. 纤维复合材料, 2020, 37(3): 95-99. CUI Y H, YU L G, JIA M Y. Study on 3D printing technology of continuous fiber reinforced PLA composite[J]. Fiber Composites, 2020, 37(3): 95-99 (in Chinese). [21] NEMATOLLAHI B, VIJAY P, SANJAYAN J, et al. Effect of polypropylene fibre addition on properties of geopolymers made by 3D printing for digital construction[J]. Materials, 2018, 11(12): 2352. [22] BOS F P, AHMED Z Y, JUTINOV E R, et al. Experimental exploration of metal cable as reinforcement in 3D printed concrete[J]. Materials, 2017, 10(11): 1314. [23] ZHOU Y Y, JIANG D, SHARMA R, et al. Enhancement of 3D printed cementitious composite by short fibers: a review[J]. Construction and Building Materials, 2023, 362: 129763. [24] 侯泽宇. 3D打印纤维增强混凝土的制备与性能研究[D]. 南京: 东南大学, 2020: 70-89. HOU Z Y. Research on preparation and performance of 3D printing fiber reinforced concrete[D].Nanjing: Southeast University, 2020: 70-89 (in Chinese). [25] SINGH S B, MUNJAL P, THAMMISHETTI N. Role of water/cement ratio on strength development of cement mortar[J]. Journal of Building Engineering, 2015, 4: 94-100. [26] 汪 群, 高 超. PVA纤维在3D打印混凝土中的应用研究[J]. 低温建筑技术, 2019, 41(4): 3-6. WANG Q, GAO C. Study on the application of pva fiber in 3D printing concrete[J]. Low Temperature Architecture Technology, 2019, 41(4): 3-6 (in Chinese). [27] HAMBACH M, VOLKMER D. Properties of 3D-printed fiber-reinforced Portland cement paste[J]. Cement and Concrete Composites, 2017, 79: 62-70. [28] 程新睿, 胡元元, 王 里, 等. PP纤维对混凝土3D可打印性和力学性能的影响[J]. 混凝土与水泥制品, 2021(9): 50-55. CHENG X R, HU Y Y, WANG L, et al. Effects of PP fiber on 3D printability and mechanical properties of concrete[J]. China Concrete and Cement Products, 2021(9): 50-55 (in Chinese). [29] 赖洋羿, 张琦彬, 唐军务. 聚丙烯纤维对水泥砂浆流动度影响试验研究[J]. 四川水泥, 2017(3): 12-13. LAI Y Y, ZHANG Q B, TANG J W. Experimental study on influence of polypropylene fiber on fluidity of cement mortar[J]. Sichuan Cement, 2017(3): 12-13 (in Chinese). [30] 刘晓瑜, 杨立荣, 宋 扬. 3D打印建筑用水泥基材料的研究进展[J]. 华北理工大学学报(自然科学版), 2018, 40(3): 46-50. LIU X Y, YANG L R, SONG Y. Research progress of 3D printing building cement-based materials[J]. Journal of North China University of Science and Technology (Natural Science Edition), 2018, 40(3): 46-50 (in Chinese). [31] 肖博丰, 李 古, 张广虎. 耐碱玻璃纤维掺量对3D打印砂浆性能的影响研究[J]. 硅酸盐通报, 2021, 40(6): 1889-1894+1910. XIAO B F, LI G, ZHANG G H. Effect of alkali-resistant glass fiber content on performance of 3D printed mortar[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(6): 1889-1894+1910 (in Chinese). [32] 常西栋, 李维红, 王 乾. 3D打印混凝土材料及性能测试研究进展[J]. 硅酸盐通报, 2019, 38(8): 2435-2441. CHANG X D, LI W H, WANG Q. Research progress of 3D printed concrete materials and its performance test[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(8): 2435-2441 (in Chinese). [33] 徐 文. 3D打印碳纤维增强绿色混凝土制备与性能研究[D]. 北京: 北京科技大学, 2023: 33-41. XU W. Research on fabrication and property of 3D printed carbon fiber reinforced green concrete[D].Beijing: University of Science and Technology Beijing, 2023: 33-41 (in Chinese). [34] 尤泽坤. 纤维增强水泥基复合材料的3D打印性能研究[D]. 太原: 太原理工大学, 2022: 29-40. YOU Z K. Study on 3D printing properties of fiber reinforced cement-based composites[D].Taiyuan: Taiyuan University of Technology, 2022: 29-40 (in Chinese). [35] 张 超, 邓智聪, 汪智斌, 等. 纤维对3D打印混凝土打印性能与力学性能的影响[J]. 硅酸盐通报, 2021, 40(6): 1870-1878+1888. ZHANG C, DENG Z C, WANG Z B, et al. Effects of fibers on printing performance and mechanical properties of 3D printing concrete[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(6): 1870-1878+1888 (in Chinese). [36] SEO E A, KIM W W, KIM S W, et al. Mechanical properties of 3D printed concrete with coarse aggregates and polypropylene fiber in the air and underwater environment[J]. Construction and Building Materials, 2023, 378: 131184. [37] 陈旭浩, 李 楠, 钟建军, 等. 纤维掺量对速凝3D打印水泥基材料力学各向异性的影响[J]. 混凝土, 2023(4): 105-109. CHEN X H, LI N, ZHONG J J, et al. Effect of fiber content on mechanical anisotropy of rapid setting 3D printing cement-based materials[J]. Concrete, 2023(4): 105-109 (in Chinese). [38] 李维红, 王 乾, 陈旭浩, 等. 纤维对3D打印水泥基材料力学性能的影响[J]. 实验力学, 2021, 36(4): 499-506. LI W H, WANG Q, CHEN X H, et al. Effect of fiber on mechanical properties of 3D printing cement-based materials[J]. Journal of Experimental Mechanics, 2021, 36(4): 499-506 (in Chinese). [39] 郑天宇. 连续纤维复合材料3D打印关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2020: 27-41. ZHENG T Y. Research on key technologies of 3D printing of continuous fiber-reinforced composites[D].Harbin: Harbin Institute of Technology, 2020: 27-41 (in Chinese). [40] 朱伶俐, 杨 章, 赵 宇, 等. 钢渣-矿渣复合水泥基材料3D打印性能[J]. 材料导报, 2023, 37(12): 111-116. ZHU L L, YANG Z, ZHAO Y, et al. 3D printing performance of composite cement-based materials with blast furnace slag and steel slag[J]. Materials Reports, 2023, 37(12): 111-116 (in Chinese). [41] ZHANG D B, FENG P, ZHOU P Z, et al. 3D printed concrete walls reinforced with flexible FRP textile: automatic construction, digital rebuilding, and seismic performance[J]. Engineering Structures, 2023, 291: 116488. [42] TU H D, WEI Z Y, BAHRAMI A, et al. Recent advancements and future trends in 3D concrete printing using waste materials[J]. Developments in the Built Environment, 2023, 16: 100187. [43] 李 艳, 程格格, 刘泽军. 聚乙烯醇纤维增强水泥基复合材料单轴受压强度与变形特性分析[J]. 工业建筑, 2017, 47(4): 122-126+158. LI Y, CHENG G G, LIU Z J. Analysis of strength and deformation properties on PVA-ECC under uniaxial compression[J]. Industrial Construction, 2017, 47(4): 122-126+158 (in Chinese). [44] 王栋民, 李小龙, 刘 泽. 粉煤灰/磷渣微粉改性水泥基3D打印材料的制备与工作性研究[J]. 硅酸盐通报, 2020, 39(8): 2372-2378+2392. WANG D M, LI X L, LIU Z. Preparation and working performance of fly ash/phosphorus slag powder modified cement-based 3D printing materials[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(8): 2372-2378+2392 (in Chinese). [45] 魏 玮, 杨 涛. 高流动性3D打印水泥基材料制备及性能研究[J]. 混凝土与水泥制品, 2021(2): 8-12. WEI W, YANG T. Study on preparation and properties of high fluidity 3D printed cement-based materials[J]. China Concrete and Cement Products, 2021(2): 8-12 (in Chinese). [46] 赵 颖, 刘维胜, 王 欢, 等. 石灰石粉对3D打印水泥基材料性能的影响[J]. 材料导报, 2020, 34(增刊2): 1217-1220. ZHAO Y, LIU W S, WANG H, et al. Effect of limestone powder on properties of cement-based materials for 3D printing[J]. Materials Reports, 2020, 34(supplement 2): 1217-1220 (in Chinese). [47] ZHANG Y, ZHANG Y, LIU G, et al. Fresh properties of a novel 3D printing concrete ink[J]. Construction and Building Materials, 2018, 174: 263-271. [48] 李维红, 常西栋, 王 乾, 等. 矿物掺合料对3D打印水泥基材料性能的影响[J]. 硅酸盐通报, 2020, 39(10): 3101-3107+3114. LI W H, CHANG X D, WANG Q, et al. Effect of mineral admixture on properties of 3D printing cement-based materials[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(10): 3101-3107+3114 (in Chinese). [49] 杨钱荣, 赵宗志, 肖建庄, 等. 矿物掺合料与化学外加剂对3D打印砂浆性能的影响[J]. 建筑材料学报, 2021, 24(2): 412-418. YANG Q R, ZHAO Z Z, XIAO J Z, et al. Effect of mineral admixtures and chemical admixtures on performance of 3D printing mortar[J]. Journal of Building Materials, 2021, 24(2): 412-418 (in Chinese). [50] RAJEEV P, RAMESH A, NAVARATNAM S, et al. Using fibre recovered from face mask waste to improve printability in 3D concrete printing[J]. Cement and Concrete Composites, 2023, 139: 105047. [51] 肖绪文, 田 伟, 苗冬梅. 3D打印技术在建筑领域的应用[J]. 施工技术, 2015, 44(10): 79-83. XIAO X W, TIAN W, MIAO D M. Application of 3D printing technology in building field[J]. Construction Technology, 2015, 44(10): 79-83 (in Chinese). [52] 夏锴伦, 陈宇宁, 刘 超, 等. 混凝土3D打印建造的低碳性研究进展[J]. 建筑结构学报, 2023: 1-21. XIA K L, CHEN Y N, LIU C, et al. Research progress on low carbon characters of concrete 3D-printing based construction[J]. Journal of Building Structures, 2023: 1-21 (in Chinese). |