硅酸盐通报 ›› 2024, Vol. 43 ›› Issue (5): 1545-1556.
• “3D 打印无机非金属材料”专题(II) • 下一篇
肖建庄1,2, 吕振源1, 刘浩然2
收稿日期:
2024-02-04
修订日期:
2024-03-26
出版日期:
2024-05-15
发布日期:
2024-06-06
作者简介:
肖建庄(1968—),男,博士,教授。主要从事再生混凝土、3D打印再生混凝土性能及固废资源化研究。E-mail:jzx@tongji.edu.cn
基金资助:
XIAO Jianzhuang1,2, LYU Zhenyuan1, LIU Haoran2
Received:
2024-02-04
Revised:
2024-03-26
Online:
2024-05-15
Published:
2024-06-06
摘要: 近年来,3D打印混凝土因无模板、自动化与智能化等优势,在建筑业智能建造方向受到越来越多的关注,结合工程实践已形成诸多应用示范。工程应用需求也对3D打印混凝土性能提出了更高要求,常常需要选择配筋增强实现安全与可靠性设计。但3D打印混凝土配筋增强技术受制备工艺影响与传统混凝土工程有所差异,应针对打印条件下配筋增强方法进行科学优化与性能调控。因此,本文聚焦配筋工艺、材料与性能、细微观表征及数值分析等方面阐述了3D打印混凝土配筋增强的基础研究进展;聚焦工程应用存在的问题,对配筋增强基础研究面临的挑战与未来发展也进行了简要讨论,力求为配筋3D打印混凝土结构安全应用提供参考。
中图分类号:
肖建庄, 吕振源, 刘浩然. 3D打印混凝土配筋增强基础研究进展[J]. 硅酸盐通报, 2024, 43(5): 1545-1556.
XIAO Jianzhuang, LYU Zhenyuan, LIU Haoran. A Fundamental Study Progress on Reinforcement Enhancement of 3D Printed Concrete[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1545-1556.
[1] 朱艳青, 史继富, 王雷雷, 等. 3D打印技术发展现状[J]. 制造技术与机床, 2015(12): 50-57. ZHU Y Q, SHI J F, WANG L L, et al. Current status of the three-dimensional printing technology[J]. Manufacturing Technology & Machine Tool, 2015(12): 50-57 (in Chinese). [2] NGO T D, KASHANI A, IMBALZANO G, et al. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges[J]. Composites Part B: Engineering, 2018, 143: 172-196. [3] 丁烈云, 徐 捷, 覃亚伟. 建筑3D打印数字建造技术研究应用综述[J]. 土木工程与管理学报, 2015, 32(3): 1-10. DING L Y, XU J, QIN Y W. Research and application review of the digital construction technology of 3D printing for construction[J]. Journal of Civil Engineering and Management, 2015, 32(3): 1-10 (in Chinese). [4] 王子明, 刘 玮. 3D打印技术及其在建筑领域的应用[J]. 混凝土世界, 2015(1): 50-57. WANG Z M, LIU W. 3D printing technology and its application in the field of architecture[J]. China Concrete, 2015(1): 50-57 (in Chinese). [5] BANDYOPADHYAY A, HEER B. Additive manufacturing of multi-material structures[J]. Materials Science and Engineering: R: Reports, 2018, 129: 1-16. [6] 张 超, 邓智聪, 马 蕾, 等. 3D打印混凝土研究进展及其应用[J]. 硅酸盐通报, 2021, 40(6): 1769-1795. ZHANG C, DENG Z C, MA L, et al. Research progress and application of 3D printing concrete[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(6): 1769-1795 (in Chinese). [7] 夏锴伦, 陈宇宁, 刘 超, 等. 混凝土3D打印建造的低碳性研究进展[J]. 建筑结构学报, 2024, 45(3): 15-33. XIA K L, CHEN Y N, LIU C, et al. Research progress on low carbon characters of 3D concrete printing based construction[J]. Journal of Building Structures, 2024, 45(3): 15-33 (in Chinese). [8] QING L B, BI M D, ZHAO N, et al. Investigation on the performance of annularly aligned steel fiber reinforced cementitious composites pipe under internal water pressure[J]. Journal of Building Engineering, 2024, 82: 108205. [9] REZAEI S M, GHOLAMPOUR A, HOSSEINI S A, et al. Wastepaper fiber-reinforced concrete containing metakaolin: effect on fracture behavior[J]. Structural Concrete, 2024: 1: 849. [10] LIU J W, KANWAL H, TANG C, et al. Study on flexural properties of 3D printed lattice-reinforced concrete structures using acoustic emission and digital image correlation[J]. Construction and Building Materials, 2022, 333: 127418. [11] ARUNOTHAYAN A R, NEMATOLLAHI B, RANADE R, et al. Fiber orientation effects on ultra-high performance concrete formed by 3D printing[J]. Cement and Concrete Research, 2021, 143: 106384. [12] PANDA B, CHANDRA P S, JEN TAN M. Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material[J]. Materials Letters, 2017, 209: 146-149. [13] ZHANG B, ZHAO J L, HUANG T, et al. Effect of fiber angles on hybrid fiber-reinforced polymer-concrete-steel double-skin tubular columns under monotonic axial compression[J]. Advances in Structural Engineering, 2020, 23(7): 1487-1504. [14] DONG H. Preparation and performance analysis of polypropylene fiber-reinforced concrete composite[J]. Asia-Pacific Journal of Chemical Engineering, 2020, 15: e2445. [15] SHI X X, NING B K, WANG J X, et al. Improving flexural toughness of foamed concrete by mixing polyvinyl alcohol-polypropylene fibers: an experimental study[J]. Construction and Building Materials, 2023, 400: 132689. [16] 赵国藩. 混凝土及其增强材料的发展与应用[J]. 建筑材料学报, 2000, 3(1): 1-6. ZHAO G F. Development and applications of concrete and its reinforcing materials[J]. Journal of Building Materials, 2000, 3(1): 1-6 (in Chinese). [17] NEEF T, MULLER S, MECHTCHERINE V. 3D printing with carbon concrete: technology and the first test results[J]. Beton-Und Stahlbetonbau. 2020, 115(12):943-951. [18] LARRALDE J. Compressive strength of small concrete specimens confined with fiberglass laminates[J]. Cement, Concrete, and Aggregates, 1997, 19(1): 17-21. [19] 陈 晶, 亢晋军, 梁雄雄, 等. 陶瓷纤维和钢纤维对轻骨料混凝土力学性能的影响[J]. 建筑科学, 2023, 39(9): 104-113. CHEN J, KANG J J, LIANG X X, et al. Effect of ceramic fiber and steel fiber on mechanical properties of light aggregate concrete[J]. Building Science, 2023, 39(9): 104-113 (in Chinese). [20] ZHOU J H, LAI J Z, DU L Y, et al. Effect of directionally distributed steel fiber on static and dynamic properties of 3D printed cementitious composite[J]. Construction and Building Materials, 2022, 318: 125948. [21] XIAO J Z, HAN N, ZHANG L H, et al. Mechanical and microstructural evolution of 3D printed concrete with polyethylene fiber and recycled sand at elevated temperatures[J]. Construction and Building Materials, 2021, 293: 123524. [22] CHEN W, PAN J L, ZHU B R, et al. Improving mechanical properties of 3D printable ‘one-part’ geopolymer concrete with steel fiber reinforcement[J]. Journal of Building Engineering, 2023, 75: 107077. [23] 陈旭浩, 李 楠, 钟建军, 等. 纤维掺量对速凝3D打印水泥基材料力学各向异性的影响[J]. 混凝土, 2023(4): 105-109. CHEN X H, LI N, ZHONG J J, et al. Effect of fiber content on mechanical anisotropy of rapid setting 3D printing cement-based materials[J]. Concrete, 2023(4): 105-109 (in Chinese). [24] 吕 春, 刘 杰. 聚合物纤维增强3D打印混凝土材料研究进展[J]. 高分子通报, 2022(7): 39-47. LV C, LIU J. Research progress of polymer fiber reinforced 3D printing concrete materials[J]. Polymer Bulletin, 2022(7): 39-47 (in Chinese). [25] PI Y L, LU C, LI B S, et al. Crack propagation and failure mechanism of 3D printing engineered cementitious composites (3DP-ECC) under bending loads[J]. Construction and Building Materials, 2023, 408: 133809. [26] MA L, ZHANG Q, LOMBOIS-BURGER H, et al. Pore structure, internal relative humidity, and fiber orientation of 3D printed concrete with polypropylene fiber and their relation with shrinkage[J]. Journal of Building Engineering, 2022, 61: 105250. [27] SUN X Y, ZHOU J W, WANG Q, et al. PVA fibre reinforced high-strength cementitious composite for 3D printing: mechanical properties and durability[J]. Additive Manufacturing, 2022, 49: 102500. [28] DING T, XIAO J Z, ZOU S, et al. Anisotropic behavior in bending of 3D printed concrete reinforced with fibers[J]. Composite Structures, 2020, 254: 112808. [29] HACK N, DÖRFLER K, WALZER A N, et al. Structural stay-in-place formwork for robotic in situ fabrication of non-standard concrete structures: a real scale architectural demonstrator[J]. Automation in Construction, 2020, 115: 103197. [30] 李整建. 纤维增强高性能混凝土力学性能的数值模拟研究[J]. 混凝土, 2023(6): 109-114. LI Z J. Numerical simulation study on mechanical properties of fiber-reinforced high-performance concrete[J]. Concrete, 2023(6): 109-114 (in Chinese). [31] 王海龙, 陈 杰, 孙晓燕, 等. 钢丝绳与3D打印水泥基复合材料的黏结性能[J]. 建筑结构学报, 2021, 42(6): 50-58. WANG H L, CHEN J, SUN X Y, et al. Bonding performance between steel wire rope and 3D printed cement-based composites[J]. Journal of Building Structures, 2021, 42(6): 50-58 (in Chinese). [32] 朱彬荣, 潘金龙, 周震鑫, 等. 3D打印技术应用于大尺度建筑的研究进展[J]. 材料导报, 2018, 32(23): 4150-4159. ZHU B R, PAN J L, ZHOU Z X, et al. Advances in large-scale three dimensional printing technology applied in construction industry[J]. Materials Review, 2018, 32(23): 4150-4159 (in Chinese). [33] ZENG J J, LI P L, YAN Z T, et al. Behavior of 3D-printed HPC plates with FRP grid reinforcement under bending[J]. Engineering Structures, 2023, 294: 116578. [34] DING T, WANG Z Y, LIU H R, et al. Simulation on pull-out performance of steel bar from 3D-printed concrete[J]. Engineering Structures, 2023, 283: 115910. [35] VANTYGHEM G, DE-CORTE W, SHAKOUR E, et al. 3D printing of a post-tensioned concrete girder designed by topology optimization[J]. Automation in Construction, 2020, 112: 103084. [36] MECHTCHERINE V, GRAFE J, NERELLA V N, et al. 3D-printed steel reinforcement for digital concrete construction-manufacture, mechanical properties and bond behaviour[J]. Construction and Building Materials, 2018, 179: 125-137. [37] SUN H C, LI F R, SHI F T. Experimental study on dynamic mechanical properties of 3D printed cement-based materials under splitting tension after high temperature[J]. Case Studies in Construction Materials, 2023, 19: e02531. [38] SOLTAN D G, LI V C. A self-reinforced cementitious composite for building-scale 3D printing[J]. Cement and Concrete Composites, 2018, 90: 1-13. [39] COWARD A, SØRENSEN J H. 3D printed concrete beams as optimised load carrying structural elements-the minimass beam[J]. Structures, 2023, 58: 105624. [40] HACK N, LAUER W V. Mesh-mould: robotically fabricated spatial meshes as reinforced concrete formwork[J]. Architectural Design, 2014, 84(3): 44-53. [41] 侯少丹, 肖建庄, 段珍华. 3D打印细石混凝土调配及其可打印性和力学性能[J]. 建筑材料学报, 2022, 25(7): 730-736. HOU S D, XIAO J Z, DUAN Z H. Preparation of 3D printable concrete with small coarse aggregate and its printability and mechanical properties[J]. Journal of Building Materials, 2022, 25(7): 730-736 (in Chinese). [42] 张亚梅. 建筑3D打印助力美丽乡村建设[J]. 硅酸盐通报, 2022, 41(9): 3344-3345. ZHANG Y M. 3D-printed building contributes to construction of beautiful villages[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(9): 3344-3345 (in Chinese). [43] LIU X F, LI Q, LI J X. Shrinkage and mechanical properties optimization of spray-based 3D printed concrete by PVA fiber[J]. Materials Letters, 2022, 319: 132253. [44] LI L G, XIAO B F, CHENG C M, et al. Adding glass fibers to 3D printable mortar: effects on printability and material anisotropy[J]. Buildings, 2023, 13(9): 2295. [45] 张 超, 邓智聪, 汪智斌, 等. 纤维对3D打印混凝土打印性能与力学性能的影响[J]. 硅酸盐通报, 2021, 40(6): 1870-1878+1888. ZHANG C, DENG Z C, WANG Z B, et al. Effects of fibers on printing performance and mechanical properties of 3D printing concrete[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(6): 1870-1878+1888 (in Chinese). [46] LIM J H, PANDA B, PHAM Q C. Improving flexural characteristics of 3D printed geopolymer composites with in-process steel cable reinforcement[J]. Construction and Building Materials, 2018, 178: 32-41. [47] 岳健广, 王 健, 吴 瑶, 等. 3D打印碳纤维混凝土断裂力学性能试验研究及数值模拟[J]. 建筑结构学报, 2023, 7: 1-15. YUE G J, WANG J, WU Y, et al. Experimental research and numerical simulation on the fracture mechanical properties of 3D printed carbon fiber reinforced concrete[J]. Journal of Building Structures, 2023, 7: 1-15 (in Chinese). [48] ZHU B R, PAN J L, ZHOU Z X, et al. Mechanical properties of engineered cementitious composites beams fabricated by extrusion-based 3D printing [J]. Engineering Structures, 2021, 238: 112201. [49] XIAO J Z, LIU H R, DING T, et al. Rebar-free concrete construction: concept, opportunities and challenges[J]. Journal of Building Engineering, 2024, 86: 108933. [50] WANG Z B, JIA L T, DENG Z C, et al. Bond behavior between steel bars and 3D printed concrete: effect of concrete rheological property, steel bar diameter and paste coating[J]. Construction and Building Materials, 2022, 349: 128708. [51] LIU B, LIU X Y, LI G T, et al. Study on anisotropy of 3D printing PVA fiber reinforced concrete using destructive and non-destructive testing methods[J]. Case Studies in Construction Materials, 2022, 17: e01519. [52] SUN X Y, WANG Q, WANG H L, et al. Influence of multi-walled nanotubes on the fresh and hardened properties of a 3D printing PVA mortar ink[J]. Construction and Building Materials, 2020, 247: 118590. [53] SUN J B, ASLANI F, LU J, et al. Fibre-reinforced lightweight engineered cementitious composites for 3D concrete printing[J]. Ceramics International, 2021, 47(19): 27107-27121. [54] IBRAHIM K A, VAN ZIJL G P A G, BABAFEMI A J. Comparative studies of LC3- and fly ash-based blended binders in fibre-reinforced printed concrete (FRPC): rheological and quasi-static mechanical characteristics[J]. Journal of Building Engineering, 2023, 80: 108016. [55] UDDIN M N, YE J H, DENG B Y, et al. Interpretable machine learning for predicting the strength of 3D printed fiber-reinforced concrete (3DP-FRC)[J]. Journal of Building Engineering, 2023, 72: 106648. [56] WANG L, WANG F C, LI R, et al. Interfacial constitutive model of 3D printed fiber reinforced concrete composites and its experimental validation[J]. Case Studies in Construction Materials, 2024, 20: e02807. [57] REINOLD J, GUDŽULIĆ V, MESCHKE G. Computational modeling of fiber orientation during 3D-concrete-printing[J]. Computational Mechanics, 2023, 71(6): 1205-1225. [58] NGUYEN V V, LIU J L, LI S, et al. Modelling of 3D-printed bio-inspired bouligand cementitious structures reinforced with steel fibres[J]. Engineering Structures, 2023, 274: 115123. [59] 占羿箭. 纤维增强3D打印混凝土受剪破坏数值模拟[J]. 江西科学, 2017, 35(6): 927-932. ZHAN Y J. Numerical simulation of the failure behavior of 3D-printed concrete with fiber reinforcement[J]. Jiangxi Science, 2017, 35(6): 927-932 (in Chinese). [60] 肖绪文, 田 伟, 苗冬梅. 3D打印技术在建筑领域的应用[J]. 施工技术, 2015, 44(10): 79-83. XIAO X W, TIAN W, MIAO D M. Application of 3D printing technology in building field[J]. Construction Technology, 2015, 44(10): 79-83 (in Chinese). [61] MA G W, LI Z J, WANG L, et al. Micro-cable reinforced geopolymer composite for extrusion-based 3D printing[J]. Materials Letters, 2019, 235: 144-147. [62] HEIDARNEZHAD F, ZHANG Q. Shotcrete based 3D concrete printing: state of art, challenges, and opportunities[J]. Construction and Building Materials, 2022, 323: 126545. [63] LIU M, WANG L, MA G W, et al. U-type steel wire mesh for the flexural performance enhancement of 3D printed concrete: a novel reinforcing approach[J]. Materials Letters, 2023, 331: 133429. [64] CLASSEN M, UNGERMANN J, SHARMA R. Additive manufacturing of reinforced concrete: development of a 3D printing technology for cementitious composites with metallic reinforcement[J]. Applied Sciences, 2020, 10(11): 3791. [65] 徐卓越, 李 辉, 张大旺, 等. 建筑3D打印用胶凝材料及其相关性能研究进展[J]. 材料导报, 2023, 37(12): 97-110. XU Z Y, LI H, ZHANG D W, et al. Research progress of cementitious materials and related properties for building 3D printing[J]. Materials Reports, 2023, 37(12): 97-110 (in Chinese). [66] 孙晓燕, 叶柏兴, 王海龙, 等. 3D打印混凝土材料与结构增强技术研究进展[J]. 硅酸盐学报, 2021, 49(5): 878-886. SUN X Y, YE B X, WANG H L, et al. Recent development on reinforcing technology of 3D printing concrete materials and structure[J]. Journal of the Chinese Ceramic Society, 2021, 49(5): 878-886 (in Chinese). [67] MARCHMENT T, SANJAYAN J. Reinforcement method for 3D concrete printing using paste-coated bar penetrations[J]. Automation in Construction, 2021, 127: 103694. [68] MARCHMENT T, SANJAYAN J. Mesh reinforcing method for 3D concrete printing[J]. Automation in Construction, 2020, 109: 102992. [69] 王海龙, 陈 杰, 高 超, 等. 水泥基材料3D打印技术研究进展[J]. 中国建材科技, 2021, 30(3): 2-7. WANG H L, CHEN J, GAO C, et al. Research development on 3D printing technology of cementitious materials[J]. China Building Materials Science & Technology, 2021, 30(3): 2-7 (in Chinese). [70] HAMBACH M, VOLKMER D. Properties of 3D-printed fiber-reinforced Portland cement paste[J]. Cement and Concrete Composites, 2017, 79: 62-70. [71] KAZEMIAN A, YUAN X, COCHRAN E, et al. Cementitious materials for construction-scale 3D printing: laboratory testing of fresh printing mixture[J]. Construction and Building Materials, 2017, 145: 639-647. [72] YU K Q, MCGEE W, NG T Y, et al. 3D-printable engineered cementitious composites (3DP-ECC): fresh and hardened properties[J]. Cement and Concrete Research, 2021, 143: 106388. [73] GENG Z F, SHE W, ZUO W Q, et al. Layer-interface properties in 3D printed concrete: dual hierarchical structure and micromechanical characterization[J]. Cement and Concrete Research, 2020, 138: 106220. [74] LI Z J, WANG L, MA G W. Mechanical improvement of continuous steel microcable reinforced geopolymer composites for 3D printing subjected to different loading conditions[J]. Composites Part B: Engineering, 2020, 187: 107796. [75] CHIHI M, TARFAOUI M, QURESHI Y, et al. Experimental investigation of the effect of infill parameters on dynamic compressive performance of 3D-Printed carbon fiber reinforced polyethylene terephthalate glycol composites[J]. Journal of Thermoplastic Composite Materials, 2023: 1: 222805. [76] BRESEGHELLO L, HAJIKARIMIAN H, JØRGENSEN H B, et al. 3DLightBeam+. Design, simulation, and testing of carbon-efficient reinforced 3D concrete printed beams[J]. Engineering Structures, 2023, 292: 116511. [77] LIU M, ZHANG Q Y, TAN Z D, et al. Investigation of steel wire mesh reinforcement method for 3D concrete printing[J]. Archives of Civil and Mechanical Engineering, 2021, 21(1): 24. [78] 钟新明, 邹素红. 基于网格增强的3D打印混凝土性能研究[J]. 房地产世界, 2020(16): 139-140. ZHONG X M, ZOU S H. Research on properties of 3D printed concrete based on grid enhancement[J]. Real Estate World, 2020(16): 139-140 (in Chinese). [79] XU Y D, ŠAVIJA B. Development of strain hardening cementitious composite (SHCC) reinforced with 3D printed polymeric reinforcement: mechanical properties[J]. Composites Part B: Engineering, 2019, 174: 107011. [80] LIU Q, CHENG S B, SUN C, et al. Steel cable bonding in fresh mortar and 3D printed beam flexural behavior[J]. Automation in Construction, 2024, 158: 105165. [81] ZHANG D B, FENG P, ZHOU P Z, et al. 3D printed concrete walls reinforced with flexible FRP textile: automatic construction, digital rebuilding, and seismic performance[J]. Engineering Structures, 2023, 291: 116488. [82] 武 雷, 康 强, 万志明. 桁架式配筋打印混凝土梁力学性能试验研究[J]. 工业建筑, 2021, 51(6): 24-28. WU L, KANG Q, WAN Z M. Experimental research on mechanical properties of printed truss-type reinforced concrete beam[J]. Industrial Construction, 2021, 51(6): 24-28 (in Chinese). [83] 孙晓燕, 沈俊逸, 王海龙, 等. 3D打印混凝土永久模板叠合梁抗弯性能研究[J]. 土木工程学报, 2022, 55(10): 1-10. SUN X Y, SHEN J Y, WANG H L, et al. Bending behavior of composite beam with 3D printed concrete permanent formwork[J]. China Civil Engineering Journal, 2022, 55(10): 1-10 (in Chinese). [84] 张治成, 叶志凯, 孙晓燕, 等. 3D打印混凝土永久模板叠合柱的抗压性能数值模拟研究[J]. 土木与环境工程学报(中英文), 2024, 46(1): 194-206. ZHANG Z C, YE Z K, SUN X Y, et al. Numerical simulation analysis on compressive performance of composite columns with 3D printed concrete permanent formwork[J]. Journal of Civil and Environmental Engineering, 2024, 46(1): 194-206 (in Chinese). |
[1] | 王小燕, 叶武平, 曹力强. 可再分散乳胶粉对钢结构界面砂浆的性能影响和机理分析[J]. 硅酸盐通报, 2024, 43(6): 1999-2004. |
[2] | 王波, 钱军, 罗杰, 徐怡, 储洪强, 蒋林华. 水工混凝土的超疏水仿生构建及微观机理[J]. 硅酸盐通报, 2024, 43(6): 2031-2038. |
[3] | 郑彪, 李顺凯, 李育林, 粟友良, 林奕安. 磁化水对海工混凝土力学性能和耐久性能的影响[J]. 硅酸盐通报, 2024, 43(6): 2039-2046. |
[4] | 侯铁军, 李想, 张晨琛, 贾兴文, 侯鹏坤. 严寒环境下磷酸镁水泥砂浆与混凝土的粘结强度及影响因素研究[J]. 硅酸盐通报, 2024, 43(6): 2064-2072. |
[5] | 汪伟, 赖增成, 谭鹏, 鞠志成, 杨海成, 范志宏. 机制砂与特细砂抗氯盐侵蚀混凝土的制备及性能研究[J]. 硅酸盐通报, 2024, 43(6): 2121-2129. |
[6] | 彭丽娟, 柯国军, 宋百姓, 蒋恬, 王文青. 废玻璃粉-偏高岭土地质聚合物胶砂的流动度和力学性能[J]. 硅酸盐通报, 2024, 43(6): 2168-2175. |
[7] | 周明凯, 王潇, 高鹏, 王宇强. 湿基α-半水石膏制备高强石膏制品研究[J]. 硅酸盐通报, 2024, 43(6): 2186-2197. |
[8] | 毛宇飞, 郭增辉, 陈晖, 张杰, 罗健林, 刘超, 商怀帅. 3D打印混凝土增强技术研究进展[J]. 硅酸盐通报, 2024, 43(5): 1557-1568. |
[9] | 彭少斌, 管学茂. 3D打印煤矸石砂浆流变性能、打印性能与力学性能研究[J]. 硅酸盐通报, 2024, 43(5): 1623-1632. |
[10] | 马逍遥, 蹇守卫, 李宝栋, 黄健翔, 高欣, 薛文浩, 汪才峰. 不同无机增稠剂对3D打印水泥基材料性能的影响[J]. 硅酸盐通报, 2024, 43(5): 1642-1650. |
[11] | 李楠, 钟建军, 邓永杰, 梁云, 万德田, 李维红, 李栋伟. 偏高岭土改性轻烧氧化镁基磷酸镁水泥的3D打印性能[J]. 硅酸盐通报, 2024, 43(5): 1663-1672. |
[12] | 刘晓江, 李之建. 粉煤灰对粉末3D打印磷酸镁水泥基材料耐水性能的影响[J]. 硅酸盐通报, 2024, 43(5): 1673-1682. |
[13] | 罗澍, 李之建, 王里. 多筋增强3D打印混凝土力学性能研究[J]. 硅酸盐通报, 2024, 43(5): 1694-1703. |
[14] | 王海龙, 侯建华, 孙晓燕, 蔺喜强, 路兰. 3D打印混凝土抗碳化性能各向异性及成因分析[J]. 硅酸盐通报, 2024, 43(5): 1704-1712. |
[15] | 陈朝晖, 格茸汪堆, 王鹏飞, 张小月, 张志刚, 廖旻懋. 3D打印混凝土界面力学行为及其对材料弹性常数影响的数值分析[J]. 硅酸盐通报, 2024, 43(5): 1713-1722. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||