硅酸盐通报 ›› 2024, Vol. 43 ›› Issue (2): 517-533.
所属专题: 资源综合利用
朱崟源1, 朱干宇2, 齐放2, 李会泉2,3, 陈艳2, 李少鹏2, 郭彦霞1
收稿日期:
2023-08-18
修订日期:
2023-11-13
出版日期:
2024-02-15
发布日期:
2024-02-05
通信作者:
朱干宇,博士,副研究员。E-mail:gyzhu@ipe.ac.cn
作者简介:
朱崟源(1999—),女,硕士研究生。主要从事硅基材料制备方面的研究。E-mail:yyzhu@ipe.ac.cn
基金资助:
ZHU Yinyuan1, ZHU Ganyu2, QI Fang2, LI Huiquan2,3, CHEN Yan2, LI Shaopeng2, GUO Yanxia1
Received:
2023-08-18
Revised:
2023-11-13
Online:
2024-02-15
Published:
2024-02-05
摘要: 大宗固废是工业生产过程中产生的各种固体废弃物,大多数固废中含有较多的硅资源和各种有价资源。水化硅酸钙(C-S-H)是一种疏松多孔、表面活性强的材料,被广泛应用于水泥活化、保温材料制备和重金属吸附等方面,将大宗固废有价资源高效提取和硅资源高效利用制备C-S-H相结合,是提高固废资源化和实现C-S-H材料规模化利用的良好途径。因此,本文分析了固废基C-S-H的合成方法及其结构、性能特点,论述了C-S-H材料在建材、环境、化工、生物等领域的应用,并进一步展望了其未来的发展方向,从而为大宗固废的硅资源利用和C-S-H材料的可控制备提供参考。
中图分类号:
朱崟源, 朱干宇, 齐放, 李会泉, 陈艳, 李少鹏, 郭彦霞. 固废基水化硅酸钙制备及综合利用研究进展[J]. 硅酸盐通报, 2024, 43(2): 517-533.
ZHU Yinyuan, ZHU Ganyu, QI Fang, LI Huiquan, CHEN Yan, LI Shaopeng, GUO Yanxia. Research Progress on Preparation and Comprehensive Utilization of Solid Waste Based Calcium Silicate Hydrates[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(2): 517-533.
[1] 李 杨, 欧宸邑. 双碳背景下大宗固废资源化利用发展对策研究[J]. 江西建材, 2022(5): 5-8+12. LI Y, OU C Y. Research on development countermeasures of resource utilization of bulk solid waste under the background of double carbon[J]. Jiangxi Building Materials, 2022(5): 5-8+12 (in Chinese). [2] QI F, CAO J Y, ZHU G Y, et al. Crystallization behavior of calcium silicate hydrate in highly alkaline system: structure and kinetics[J]. Journal of Crystal Growth, 2022, 584: 126578. [3] QI F, ZHU G Y, ZHANG Y M, et al. Effect of calcium to silica ratio on the synthesis of calcium silicate hydrate in high alkaline desilication solution[J]. Journal of the American Ceramic Society, 2021, 104(1): 535-547. [4] 刘士达, 李宗利, 童涛涛, 等. 湿度对水化硅酸钙力学性能影响的分子动力学模拟[J]. 硅酸盐通报, 2022, 41(5): 1554-1561. LIU S D, LI Z L, TONG T T, et al. Molecular dynamics simulation on effect of humidity on mechanical properties of calcium silicate hydrate[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(5): 1554-1561 (in Chinese). [5] 李 犇. 水化硅酸钙(C-S-H)凝胶的细观力学机理研究[D]. 哈尔滨: 哈尔滨工程大学, 2018. LI B. Study on micromechanical mechanism of hydrated calcium silicate (C-S-H) gel[D]. Harbin: Harbin Engineering University, 2018 (in Chinese). [6] 刘 新, 冯 攀, 沈叙言, 等. 水泥水化产物: 水化硅酸钙(C-S-H)的研究进展[J]. 材料导报, 2021, 35(9): 9157-9167. LIU X, FENG P, SHEN X Y, et al. Advances in the understanding of cement hydrate: calcium silicate hydrate (C-S-H)[J]. Materials Reports, 2021, 35(9): 9157-9167 (in Chinese). [7] 王 锦, 徐 文, 李 辉. 不同条件对合成水化硅酸钙结构与性能的影响研究综述[J]. 硅酸盐通报, 2015, 34(5): 1296-1301. WANG J, XU W, LI H. Review on effect of different conditions on the structure and performance of the synthesized calcium silicate hydrated[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(5): 1296-1301 (in Chinese). [8] 齐 放. 煤基固废非晶态硅调控制备多孔硅基材料基础研究[D]. 武汉: 武汉科技大学, 2022. QI F. Basic research on preparation of porous silicon-based materials by controlling coal-based solid waste amorphous silicon[D]. Wuhan: Wuhan University of Science and Technology, 2022 (in Chinese). [9] 杨宏泉, 孙志刚, 曲江山, 等. 中石化典型地区气化炉渣基础物性分析研究[J]. 洁净煤技术, 2021, 27(3): 101-108. YANG H Q, SUN Z G, QU J S, et al. Analysis and research on basic physical properties of gasification slag in representative areas of Sinopec[J]. Clean Coal Technology, 2021, 27(3): 101-108 (in Chinese). [10] 燕可洲. 煤基固废中铝硅酸盐矿物在碳酸钠作用下的物相转变机理[D]. 太原: 山西大学, 2018. YAN K Z. Phase transformation mechanism of aluminosilicate minerals in coal-based solid waste under the action of sodium carbonate[D]. Taiyuan: Shanxi University, 2018 (in Chinese). [11] QI F, SUN J, ZHU G Y, et al. Recycling of blast furnace slag to prepare calcium silicate hydrate by mechanical-chemical co-activation and its application to calcium silicate fireproof board[J]. Process Safety and Environmental Protection, 2022, 165: 1-12. [12] KUWAHARA Y, YAMASHITA H. Phosphate removal from aqueous solutions using calcium silicate hydrate prepared from blast furnace slag[J]. ISIJ International, 2017, 57(9): 1657-1664. [13] 吕松青. 粉煤灰制备托贝莫来石晶须工艺及其机理[D]. 北京: 北京化工大学, 2015. LYU S Q. Technology and mechanism of preparing tobermorite whiskers from fly ash[D]. Beijing: Beijing University of Chemical Technology, 2015 (in Chinese). [14] 刘凤梅, 韩守梅. 利用水淬炉渣合成托贝莫来石的研究[J]. 中国非金属矿工业导刊, 2001(4): 10-11. LIU F M, HAN S M. Researches on using water-granulateal bladt furnace slag for synthetic mullite[J]. China Non-Metallic Mining Industry Herald, 2001(4): 10-11 (in Chinese). [15] 杨敬杰. 粉煤灰铵盐焙烧生态化利用工艺技术研究[D]. 绵阳: 西南科技大学, 2017. YANG J J. Study on ecological utilization technology of ammonium salt roasting of fly ash[D]. Mianyang: Southwest University of Science and Technology, 2017 (in Chinese). [16] 朱干宇. 高铝粉煤灰非晶态氧化硅高值化利用基础研究[D]. 北京: 中国科学院大学, 2016. ZHU G Y. Basic research on high-value utilization of amorphous silica from high-alumina fly ash[D]. Beijing: University of Chinese Academy of Sciences, 2016 (in Chinese). [17] 胡婷婷. 白泥基水化硅酸钙的制备及其制品的性能研究[D]. 重庆: 重庆大学, 2020. HU T T. Preparation of white mud-based calcium silicate hydrate and study on the properties of its products[D]. Chongqing: Chongqing University, 2020 (in Chinese). [18] 沈 鑫, 郭随华, 李文伟, 等. 低热硅酸盐水泥水化及性能研究现状[J]. 硅酸盐通报, 2023, 42(2): 383-392. SHEN X, GUO S H, LI W W, et al. Research status on hydration and properties of low-heat Portland cement[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(2): 383-392 (in Chinese). [19] 刘 浩, 戚 文, 张 群, 等. 不同温度条件下矿渣水泥的水化反应机理研究[J]. 新型建筑材料, 2022, 49(9): 154-157. LIU H, QI W, ZHANG Q, et al. Study on hydration reaction mechanism of slag cement at different temperatures[J]. New Building Materials, 2022, 49(9): 154-157 (in Chinese). [20] 蒙绍强. 纳米材料对水泥水化影响机理的研究[D]. 广州: 广州大学, 2022. MENG S Q. Study on the influence mechanism of nano-materials on cement hydration[D]. Guangzhou: Guangzhou University, 2022 (in Chinese). [21] 唐芮枫, 张佳乐, 王子明, 等. C-S-H纳米晶种及其对水泥水化硬化的促进作用综述[J]. 材料导报, 2023, 37(9): 109-124. TANG R F, ZHANG J L, WANG Z M, et al. Summary of C-S-H nano-seed and its promoting effect on cement hydration and hardening[J]. Materials Reports, 2023, 37(9): 109-124 (in Chinese). [22] VIPASRI K. Comprehensive study on calcium-silicate-hydrate-polycarboxylate superplasticizer (C-S-HPCE) nanocomposites as accelerating admixtures in cement[D]. München: Technische Universität München, 2018. [23] MICHAEL B, LAN M H, CHRISTOPH H, et al. Nanostructured calcium silicate hydrate seeds accelerate concrete hardening: a combined assessment of benefits and risks[J]. Archives of Toxicology, 2012, 86(7): 1077-1087. [24] KANCHANASON V, PLANK J. Role of pH on the structure, composition and morphology of C-S-H-PCE nanocomposites and their effect on early strength development of Portland cement[J]. Cement and Concrete Research, 2017, 102: 90-98. [25] THOMAS J J, JENNINGS H M, CHEN J J. Influence of nucleation seeding on the hydration mechanisms of tricalcium silicate and cement[J]. The Journal of Physical Chemistry C, 2009, 113(11): 4327-4334. [26] LI J Q, ZHANG W X, XU K, et al. Fibrillar calcium silicate hydrate seeds from hydrated tricalcium silicate lower cement demand[J]. Cement and Concrete Research, 2020, 137: 106195. [27] ZHANG G, YANG Y Z, LI H M. Calcium-silicate-hydrate seeds as an accelerator for saving energy in cold weather concreting[J]. Construction and Building Materials, 2020, 264: 120191. [28] LAND G, STEPHAN D. The effect of synthesis conditions on the efficiency of C-S-H seeds to accelerate cement hydration[J]. Cement and Concrete Composites, 2018, 87: 73-78. [29] NICOLEAU L. Accelerated growth of calcium silicate hydrates: experiments and simulations[J]. Cement and Concrete Research, 2011, 41(12): 1339-1348. [30] ZHAO D D, KHOSHNAZAR R. Hydration and microstructural development of calcined clay cement paste in the presence of calcium-silicate-hydrate (C-S-H) seed[J]. Cement and Concrete Composites, 2021, 122: 104162. [31] JOHN E, MATSCHEI T, STEPHAN D. Nucleation seeding with calcium silicate hydrate: a review [J]. Cement and Concrete Research, 2018, 113: 74-85. [32] MA W P, BROWN P W. Hydrothermal synthesis of tobermorite from fly ashes[J]. Advances in Cement Research, 1997, 9(33): 9-16. [33] 郝 明, 普连仙, 刘 畅. 硅酸钙保温材料发展研究进展[J]. 建材发展导向, 2014, 12(16): 29-31. HAO M, PU L X, LIU C. Development and research progress of calcium silicate thermal insulation materials[J]. Development Guide to Building Materials, 2014, 12(16): 29-31 (in Chinese). [34] 焦志强. 托贝莫来石型硅酸钙[J]. 房材与应用, 1996(3): 25-29. JIAO Z Q. Tobermorite type calcium silicate[J]. Housing Materials and Applications, 1996(3): 25-29 (in Chinese). [35] ZOU J J, GUO C B, ZHOU X Q, et al. Sorption capacity and mechanism of Cr3+ on tobermorite derived from fly ash acid residue and carbide slag[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538: 825-833. [36] CAO P X, LI G H, LUO J, et al. Alkali-reinforced hydrothermal synthesis of lathy tobermorite fibers using mixture of coal fly ash and lime[J]. Construction and Building Materials, 2020, 238: 117655. [37] LEITE F H G, ALMEIDA T F, FARIA R T, et al. Synthesis and characterization of calcium silicate insulating material using avian eggshell waste[J]. Ceramics International, 2017, 43(5): 4674-4679. [38] 刘红艳, 王 丽, 衣 伟, 等. 利用工业电石渣合成硅酸钙保温材料[J]. 实验室研究与探索, 2010, 29(1): 9-11+103. LIU H Y, WANG L, YI W, et al. Synthesis of calcium silicate thermal insulation material from industrial carbide slag[J]. Research and Exploration in Laboratory, 2010, 29(1): 9-11+103 (in Chinese). [39] 王 涵. 粉煤灰基多孔保温材料制备与表征[D]. 淄博: 山东理工大学, 2016. WANG H. Preparation and characterization of fly ash-based porou thermal insulation materials[D]. Zibo: Shandong University of Technology, 2016 (in Chinese). [40] WANG Z, MA S, ZHENG S, et al. Flexural strength and thermal conductivity of fiber-reinforced calcium silicate boards prepared from fly ash [J]. Journal of Materials in Civil Engineering, 2019, 31(8): 04019140. [41] CAO Z, CAO Y D, ZHANG J S, et al. Preparation and characterization of high-strength calcium silicate boards from coal-fired industrial solid wastes[J]. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(8): 892-900. [42] 聂金荣. 褐煤粉煤灰制备含铝托贝莫来石保温材料的研究[J]. 新型建筑材料, 2019, 46(8): 136-139+144. NIE J R. Study on preparation of aluminized tobemullite thermal insulation material from brown pulverized coal ash[J]. New Building Materials, 2019, 46(8): 136-139+144 (in Chinese). [43] 张宇飞. 改性石灰岩水热合成硬硅钙石型保温材料[J]. 非金属矿, 2017, 40(5): 53-55. ZHANG Y F. Modified limestone hydrothermal synthesis of hard silica calcium silicate type insulation material[J]. Non-Metallic Ore, 2017, 40(5): 53-55 (in Chinese). [44] ZOU J J, GUO C B, JIANG Y S, et al. Structure, morphology and mechanism research on synthesizing xonotlite fiber from acid-extracting residues of coal fly ash and carbide slag[J]. Materials Chemistry and Physics, 2016, 172: 121-128. [45] 刘 飞. 水热合成硬硅钙石晶须及其在超轻质硅酸钙材料中应用的研究[D]. 广州: 华南理工大学, 2010. LIU F. Study on hydrothermal synthesis of xonotlite whiskers and their application in ultra-light calcium silicate materials[D]. Guangzhou: South China University of Technology, 2010 (in Chinese). [46] PENG X. Dynamic hydrothermal synthesis of xonotlite fibers by alkali silica extraction of fly ash[J]. Journal of Engineered Fibers and Fabrics, 2019, 14: 1-5. [47] LIU F, WANG X D, CAO J X. Effect of ultrasonic process on carbide slag activity and synthesized xonotlite[J]. Physics Procedia, 2012, 25: 56-62. [48] 苏 振. 锆硅渣制备硬硅钙石型保温绝热材料的研究[D]. 淄博: 山东理工大学, 2014. SU Z. Study on preparation of hard silicate thermal insulation material with zirconium silica slag[D]. Zibo: Shandong University of Technology, 2014 (in Chinese). [49] 曾令可, 曹建新, 刘世明, 等. SiO2气凝胶-硅酸钙复合纳米孔超级绝热材料导热系数的测定及绝热机理分析[J]. 材料工程, 2009, 37(增刊1): 27-31. ZENG L K, CAO J X, LIU S M, et al. Measurement of thermal conductivity and analysis of thermal insulation mechanism of SiO2 aerogel-calcium silicate composite nanoporous super thermal insulation material[J]. Journal of Materials Engineering, 2009, 37(supplement 1): 27-31 (in Chinese). [50] 刘金婵, 乐红志, 朱建平, 等. 陶瓷纤维对硬硅钙石保温材料性能的影响[J]. 山东理工大学学报(自然科学版), 2021, 35(5): 62-66. LIU J C, LE H Z, ZHU J P, et al. Effect of ceramic fiber on properties of xonotlite thermal insulation material[J]. Journal of Shandong University of Technology (Natural Science Edition), 2021, 35(5): 62-66 (in Chinese). [51] 曹建新. 电石渣制备硬硅钙石基和碳酸钙基材料及机理研究[D]. 贵州: 贵州大学, 2013. CAO J X. Study on the preparation and mechanism of hard calcium silicate based and calcium carbonate based materials from calcium carbide slag[D]. Guizhou: Guizhou University, 2013 (in Chinese). [52] MARTÍN-GARRIDO M, MARTÍNEZ-RAMÍREZ S. CO2 adsorption on calcium silicate hydrate gel synthesized by double decomposition method[J]. Journal of Thermal Analysis and Calorimetry, 2021, 143(6): 4331-4339. [53] GANESH K. P, SHAMIK C, RAJASEKHAR B. Biomass derived low-cost microporous adsorbents for efficient CO2 capture[J]. Fuel, 2015, 148: 246-254. [54] EL-HASSAN H, SHAO Y. Carbon storage through concrete block carbonation[J]. Journal of Clean Energy Technologies, 2014: 287-291. [55] WANG T, HUANG H, HU X T, et al. Accelerated mineral carbonation curing of cement paste for CO2 sequestration and enhanced properties of blended calcium silicate[J]. Chemical Engineering Journal, 2017, 323: 320-329. [56] SEVELSTED T F, SKIBSTED J. Carbonation of C-S-H and C-A-S-H samples studied by 13C, 27Al and 29Si MAS NMR spectroscopy[J]. Cement and Concrete Research, 2015, 71: 56-65. [57] LI J, YU Q J, HUANG H L, et al. Effects of Ca/Si ratio, aluminum and magnesium on the carbonation behavior of calcium silicate hydrate[J]. Materials, 2019, 12(8): 1268. [58] 范龄元, 张 梅, 郭 敏. 二氧化硅气凝胶的制备、氨基改性及低温吸附CO2性能研究进展[J]. 材料导报, 2022, 36(15): 5-12. FAN L Y, ZHANG M, GUO M. Research progress in preparation, amino modification and low-temperature adsorption of CO2 on silica aerogels[J]. Materials Reports, 2022, 36(15): 5-12 (in Chinese). [59] NADAROGLU H, KALKAN E, DEMIR N. Removal of copper from aqueous solution using red mud[J]. Desalination, 2010, 251(1/2/3): 90-95. [60] 王美玲. 固废基吸附剂对废水中重金属离子的去除性能研究[D]. 太原: 太原理工大学, 2016. WANG M L. Study on removal performance of heavy metal ions in wastewater by solid waste-based adsorbent[D]. Taiyuan: Taiyuan University of Technology, 2016 (in Chinese). [61] 祁先进, 李雪竹, 祝 星, 等. 一种铜渣协同电石渣处理污酸中砷的方法: CN111003775B[P]. 2022-05-27. QI X J, LI X Z, ZHU X, et al. A method of copper slag cooperating with calcium carbide slag for treating arsenic in waste acid: CN111003775B[P]. 2022-05-27 (in Chinese). [62] 刘 畅. 电石渣基纳米碳酸钙的制备及吸附重金属的研究[D]. 呼和浩特: 内蒙古工业大学, 2018. LIU C. Preparation of calcium carbide slag-based nano-calcium carbonate and its adsorption of heavy metals[D]. Hohhot: Inner Mongolia University of Tehchnology, 2018 (in Chinese). [63] LIU L H, LIU S Y, PENG H L, et al. Surface charge of mesoporous calcium silicate and its adsorption characteristics for heavy metal ions[J]. Solid State Sciences, 2020, 99: 106072. [64] 陶 欢. 固废基水化硅酸钙的制备及其去除重金属性能研究[D]. 徐州: 中国矿业大学, 2021. TAO H. Preparation of solid waste based hydrated calcium silicate and its performance in removing heavy metals[D]. Xuzhou: China University of Mining and Technology, 2021 (in Chinese). [65] QI F, ZHU G Y, ZHANG Y M, et al. Eco-utilization of silicon-rich lye: synthesis of amorphous calcium silicate hydrate and its application for recovering heavy metals[J]. Separation and Purification Technology, 2022, 282: 120092. [66] ZHANG Q, LIU G J, PENG S C, et al. Immobilization of hexavalent chromium in soil-plant environment using calcium silicate hydrate synthesized from coal gangue[J]. Chemosphere, 2022, 305: 135438. [67] ZHAO Y, CHEN H, YAN Q. Enhanced phosphate removal during the simultaneous adsorption of phosphate and Ni2+ from electroless nickel wastewater by calcium silicate hydrate (C-S-H)[J]. Environmental Technology & Innovation, 2017, 8: 141-149. [68] SHAO N N, LI S, YAN F, et al. An all-in-one strategy for the adsorption of heavy metal ions and photodegradation of organic pollutants using steel slag-derived calcium silicate hydrate[J]. Journal of Hazardous Materials, 2020, 382: 121120. [69] CHEN L N, WANG X W, CHEN Y W, et al. Recycling heavy metals from wastewater for photocatalytic CO2 reduction[J]. Chemical Engineering Journal, 2020, 402: 125922. [70] 李秋芸, 陈雅鹏, 陈林楠, 等. 磁性硅酸钙重金属离子吸附剂用于光催化还原CO2[J]. 硅酸盐学报, 2021, 49(10): 2045-2052. LI Q Y, CHEN Y P, CHEN L N, et al. Magnetic calcium silicate heavy metal ion adsorbent for photocatalytic reduction of CO2[J]. Journal of the Chinese Ceramic Society, 2021, 49(10): 2045-2052 (in Chinese). [71] OKANO K, UEMOTO M, KAGAMI J, et al. Novel technique for phosphorus recovery from aqueous solutions using amorphous calcium silicate hydrates (A-CSHs)[J]. Water Research, 2013, 47(7): 2251-2259. [72] 董 阳. 水化硅酸钙与沸石强化人工湿地处理水中低浓度氮磷研究[D]. 上海: 上海交通大学, 2012. DONG Y. Study on the treatment of low concentration nitrogen and phosphorus in water by hydrated calcium silicate and zeolite enhanced artificial wetland[D]. Shanghai: Shanghai Jiao Tong University, 2012 (in Chinese). [73] KUWAHARA Y, TAMAGAWA S, FUJITANI T, et al. A novel conversion process for waste slag: synthesis of calcium silicate hydrate from blast furnace slag and its application as a versatile adsorbent for water purification[J]. Journal of Materials Chemistry, 2013, 1(24): 7199-7210. [74] FANG D X, HUANG L P, FANG Z Y, et al. Evaluation of porous calcium silicate hydrate derived from carbide slag for removing phosphate from wastewater [J]. Chemical Engineering Journal, 2018, 354: 1-11. [75] 温丙奎, 吴礼滨, 刘 庄, 等. 粉煤灰处理含磷废水工艺特性初探[J]. 山东化工, 2019, 48(5): 229-230+234. WEN B K, WU L B, LIU Z, et al. Preliminary study on technological characteristics of phosphorus-containing wastewater treatment with fly ash[J]. Shandong Chemical Industry, 2019, 48(5): 229-230+234 (in Chinese). [76] 周光红, 项学敏, 李厚芬, 等. 粉煤灰对水溶液中磷的吸附性能及机理[J]. 环境工程学报, 2012, 6(8): 2600-2606. ZHOU G H, XIANG X M, LI H F, et al. Performance and mechanism of phosphorus adsorption in aqueous solution with fly ash[J]. Chinese Journal of Environmental Engineering, 2012, 6(8): 2600-2606 (in Chinese). [77] 杨建林, 张宇鳌, 马淑花, 等. 不同粒径改性粉煤灰对磷酸根吸附性能的影响[J]. 过程工程学报, 2020, 20(11): 1281-1288. YANG J L, ZHANG Y A, MA S H, et al. Effect of modified fly ash with different particle sizes on phosphate adsorption performance[J]. The Chinese Journal of Process Engineering, 2020, 20(11): 1281-1288 (in Chinese). [78] 吴 限. 镧改性水合硅酸钙制备及其除磷效果研究[D]. 武汉: 华中科技大学, 2020. WU X. Preparation and phosphorus removal effect of lanthanum modified hydrated calcium silicate[D]. Wuhan: Huazhong University of Science and Technology, 2020 (in Chinese). [79] 司麒石. 赤泥中提取硅制备镁改性硅酸钙及其去除水中氮磷研究[D]. 哈尔滨: 黑龙江大学, 2018. SI Q S. Preparation of magnesium modified calcium silicate by extracting silicon from red mud and its removal of nitrogen and phosphorus from water[D]. Harbin: Heilongjiang University, 2018 (in Chinese). [80] 董 阳, 雷月华, 李春杰, 等. 水化硅酸钙与沸石滤柱去除水中低浓度氮磷[J]. 净水技术, 2012, 31(5): 29-32+62. DONG Y, LEI Y H, LI C J, et al. Removal of low concentration of nitrogen and phosphorus from water processes of filter columns adsorption filled with hydrated calcium silicate and natural zeolite[J]. Water Purification Technology, 2012, 31(5): 29-32+62 (in Chinese). [81] 胡彩霞, 韩剑宏, 郝 敏, 等. 硬硅钙石二次粒子对焦化废水氨氮去除效果的影响研究[J]. 内蒙古科技大学学报, 2008, 27(2): 169-172. HU C X, HAN J H, HAO M, et al. Study on the effect of secondary particles of xonotlite on the removal of ammonia nitrogen from coking wastewater[J]. Journal of Inner Mongolia University of Science and Technology, 2008, 27(2): 169-172 (in Chinese). [82] SONG S X, ZHEN X L, ZHANG M Y, et al. Engineered porous calcium silicate as paper filler: effect of filler morphology on paper properties[J]. Nordic Pulp & Paper Research Journal, 2018, 33(3): 534-541. [83] QIU Y J, CAO S T, CHEN F F, et al. Synthesis of calcium silicate as paper filler with desirable particle size from desilication solution of silicon-containing waste residues[J]. Powder Technology, 2020, 368: 137-148. [84] 王 莎. 沉淀碳酸钙填料的改性及其在造纸中的应用研究[J]. 华东纸业, 2020, 50(3): 1-3. WANG S. Modification of precipitated calcium carbonate filler and its application in papermaking[J]. East China Paper Industry, 2020, 50(3): 1-3 (in Chinese). [85] 吴 盼, 张美云, 王 建, 等. 粉煤灰联产新型活性硅酸钙作为造纸填料的可行性探讨[J]. 中国造纸, 2012, 31(12): 5. WU P, ZHANG M Y, WANG J, et al. Application of calcium silicate generated from fly ash as filler in papermaking[J]. China Pulp & Paper, 2012, 31(12): 5 (in Chinese). [86] 宋顺喜. 多孔硅酸钙填料的造纸特性及其加填纸结构与性能的研究[D]. 西安: 陕西科技大学, 2014. SONG S X. Study on the papermaking characteristics of porous calcium silicate filler and the structure and properties of the filler paper[D]. Xi’an: Shaanxi University of Science & Technology, 2014 (in Chinese). [87] 曹凯月. 合成硅酸钙的预絮聚改性及其加填研究[D]. 北京: 中国制浆造纸研究院, 2017. CAO K Y. Study on pre-flocculation modification and filling of synthetic calcium silicate[D]. Beijing: China National Pulpand Paper Research Institute, 2017 (in Chinese). [88] 吴 盼, 张美云, 王 建, 等. 阳离子淀粉对硅酸钙填料应用性能的影响[J]. 纸和造纸, 2013, 32(6): 48-53. WU P, ZHANG M Y, WANG J, et al. Effect of cationic starch on the application performance of calcium silicate filler[J]. Paper and Paper Making, 2013, 32(6): 48-53 (in Chinese). [89] 方志平. 石墨烯/硅酸钙纤维天然橡胶复合材料的动态疲劳性能研究[D]. 北京; 北京理工大学, 2017. FANG Z P. Study on dynamic fatigue properties of graphene/calcium silicate fiber natural rubber composites [D]. Beijing: Beijing Institute of Technology, 2017 (in Chinese). [90] CHOLLAKUP R, SUETHAO S, SUWANRUJI P, et al. Mechanical properties and dissipation energy of carbon black/rubber composites[J]. Composites and Advanced Materials, 2021, 30. [91] 王 丽, 付 文, 林乐智, 等. 改性剂用量对白炭黑补强天然橡胶性能的影响[J]. 弹性体, 2020, 30(1): 6-11. WANG L, FU W, LIN L Z, et al. Effect of modifier dosage on properties of natural rubber reinforced by white carbon black[J]. China Elastomerics, 2020, 30(1): 6-11 (in Chinese). [92] PAUL A, DAVID D A, BALAKRISHNAN N T M, et al. Novel approach towards the functionalization of ISAF carbon black for reinforcing acrylonitrile butadiene rubber [J]. Materials Today: Proceedings, 2022, 51: 2608-2613. [93] 邓建清. 硅酸钙填充天然橡胶性能研究[D]. 北京: 北京化工大学, 2014. DENG J Q. Study on properties of natural rubber filled with calcium silicate[D]. Beijing: Beijing University of Chemical Technology, 2014 (in Chinese). [94] 刘钦甫, 张士龙, 孙俊民, 等. 活性硅酸钙填充丁苯橡胶复合材料性能研究[J]. 湖南科技大学学报(自然科学版), 2013, 28(2): 95-101. LIU Q F, ZHANG S L, SUN J M, et al. Study on properties of SBR composites filled with activated calcium silicate[J]. Journal of Hunan University of Science and Technology (Natural Science Edition), 2013, 28(2): 95-101 (in Chinese). [95] 彭小芹, 顾淑英, 黄 涛, 等. 水化硅酸钙粉体对硅橡胶的补强作用[J]. 土木建筑与环境工程, 2010, 32(5): 109-113. PENG X Q, GU S Y, HUANG T, et al. Strengthening effect of hydrated calcium silicate powder on silicone rubber[J]. Journal of Civil and Environmental Engineering, 2010, 32(5): 109-113 (in Chinese). [96] 张士龙, 刘钦甫, 丁述理, 等. 活性硅酸钙填充天然橡胶复合材料性能的研究[J]. 河北工程大学学报(自然科学版), 2013, 30(1): 52-58. ZHANG S L, LIU Q F, DING S L, et al. Study on the properties of natural rubber composite materials filled with activated calcium silicate[J]. Journal of Hebei University of Engineering (Natural Science Edition), 2013, 30(1): 52-58 (in Chinese). [97] 程朝霞, 彭小芹, 季晓丽, 等. 活性硅酸钙粉体改性及其增强硅橡胶性能研究[J]. 非金属矿, 2018, 41(2): 38-41. CHENG Z X, PENG X Q, JI X L, et al. Study on modification of activated calcium silicate powder and its enhancement of silicone rubber properties[J]. Non-Metallic Mines, 2018, 41(2): 38-41 (in Chinese). [98] 程朝霞, 彭小芹, 季晓丽, 等. 甲基丙烯酸处理活性硅酸钙填充硅橡胶的性能[J]. 材料导报, 2018, 32(18): 3261-3265. CHENG Z X, PENG X Q, JI X L, et al. Properties of silicone rubber filled with activated calcium silicate treated with methacrylic acid[J]. Materials Reports, 2018, 32(18): 3261-3265 (in Chinese). [99] 赵会星. 水化硅酸钙超细粉体补强橡胶研究[D]. 重庆: 重庆大学, 2007. ZHAO H X. Study on the reinforcement of rubber with hydrated calcium silicate ultrafine powder[D]. Chongqing: Chongqing University, 2007 (in Chinese). [100]梁海欧. 多孔硅酸钙载银系掺杂二氧化钛光催化剂的制备及性能研究[D]. 呼和浩特: 内蒙古工业大学, 2014. LIANG H O. Preparation and performance study of porous calcium silicate supported silver doped titanium dioxide photocatalyst[D]. Hohhot: Inner Mongolia University of Technology, 2014 (in Chinese). [101]郭文霞, 吴永军. TiO2/CaSiO3复合型光催化剂的制备及其性能研究[J]. 广州化工, 2015, 43(23): 102-104. GUO W X, WU Y J. Fabrication of CaSiO3-stabilized TiO2 composites and their photocatalytic properties[J]. Guangzhou Chemical Industry, 2015, 43(23): 102-104 (in Chinese). [102]魏子钦. 钛酸钡/硅酸钙生物压电复合材料的制备及其性能研究[D]. 上海: 上海师范大学, 2022. WEI Z Q. Preparation and properties of barium titanate/calcium silicate biopiezoelectric composites[D]. Shanghai: Shanghai Normal University, 2022 (in Chinese). [103]林开利. 纳米磷酸钙、硅酸钙及其复合生物与环境材料的制备和性能研究[D]. 上海: 华东师范大学, 2008. LIN K L. Preparation and performance study of nano calcium phosphate, calcium silicate, and their composite biological and environmental materials[D]. Shanghai: East China Normal University, 2008 (in Chinese). [104]张 晨, 李 立, 赵 绮, 等. 硅酸钙基生物材料用于根尖倒充填的临床研究——基于PSM分析的回顾性研究[J]. 口腔医学, 2022, 42(10): 917-921. ZHANG C, LI L, ZHAO Q, et al. Clinical study of calcium silicate-based biomaterials for root tip backfilling: a retrospective study based on PSM analysis[J]. Stomatology, 2022, 42(10): 917-921 (in Chinese). |
[1] | 周武, 李杨, 冯伟光, 苏轶, 揭伟哲, 张华, 倪红卫. 磷石膏的综合利用及其在建筑材料领域的应用研究进展[J]. 硅酸盐通报, 2024, 43(2): 534-542. |
[2] | 周良芹, 王蓉, 范金龙, 王佳妮, 许腾飞, 谭文渊, 付大友. NiMgAl-HTLC的制备及其对水体富营养化的抑制性能研究[J]. 硅酸盐通报, 2024, 43(2): 734-745. |
[3] | 易钰奇, 李静, 韦柳媚, 田浩, 庄恩德, 黎雪杰. 不同镁铝比LDHs对钢筋阻锈性能的影响[J]. 硅酸盐通报, 2024, 43(1): 121-127. |
[4] | 肖莎, 彭同江, 孙红娟, 张伟. 不同层电荷数钙蒙脱石对黄曲霉毒素B1的吸附性能与机理研究[J]. 硅酸盐通报, 2024, 43(1): 172-182. |
[5] | 张建纲, 杨勇, 毛永琳, 周栋梁, 李申振, 王涛. 硅灰对聚羧酸减水剂的吸附作用[J]. 硅酸盐通报, 2024, 43(1): 183-190. |
[6] | 谢修鑫, 廖立兵, 雷馨宇, 王丽娟, 唐晓尉. EDTA-LDH/zeolite制备及其对重金属离子的吸附[J]. 硅酸盐通报, 2024, 43(1): 370-382. |
[7] | 金星, 傅金祥, 张黎, 何祥. 锰氧化膜包覆沸石的制备及其处理含锰水特性研究[J]. 硅酸盐通报, 2023, 42(9): 3295-3305. |
[8] | 熊军红, 欧阳东. 黏土矿物对聚羧酸减水剂在净浆、砂浆和混凝土中分散性的影响[J]. 硅酸盐通报, 2023, 42(7): 2344-2353. |
[9] | 景国建, 徐凯丽, 徐兴伟, 牛腾, 韩乐冰. 聚合氯化铝对聚羧酸减水剂黏土吸附性的影响[J]. 硅酸盐通报, 2023, 42(7): 2354-2360. |
[10] | 秦思成, 吴锦绣, 齐源昊, 柳召刚, 胡艳宏, 冯福山, 李健飞, 张晓伟. 添加剂对无水硫酸钙晶须生长的影响及分子动力学模拟[J]. 硅酸盐通报, 2023, 42(7): 2551-2562. |
[11] | 许蒙, 郭玉呈, 林国强, 李建保, 陈拥军, 骆丽杰. 硼氮共掺杂生物质炭的制备及吸附性能研究[J]. 硅酸盐通报, 2023, 42(6): 2242-2250. |
[12] | 徐啟斌, 牛香力, 陈婷婷, 陈雨欣, 李杨, 张华, 倪红卫. 煤气化渣合成4A分子筛及其吸附性能研究[J]. 硅酸盐通报, 2023, 42(6): 2251-2261. |
[13] | 袁波, 赵亮, 李博, 陈伟, 唐佩, 曹海琳, 郭悦. 基于亚硝酸根插层LDHs的高效水泥降铬剂研究[J]. 硅酸盐通报, 2023, 42(5): 1542-1550. |
[14] | 周宗可, 覃宗华, 万泉, 聂信, 于文彬. 勃姆石对稀土离子的吸附性研究[J]. 硅酸盐通报, 2023, 42(5): 1688-1695. |
[15] | 叶远林, 罗立群, 陈荣升, 王明细, 刘成, 雷严明. 铜渣尾矿用作沥青混合料填料的性能及应用机理[J]. 硅酸盐通报, 2023, 42(5): 1740-1749. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||