硅酸盐通报 ›› 2024, Vol. 43 ›› Issue (12): 4521-4531.
赖岳飞, 王辉军, 曾强, 熊成荣, 苏小丽, 罗婷
收稿日期:
2024-05-30
修订日期:
2024-07-05
出版日期:
2024-12-15
发布日期:
2024-12-19
通信作者:
罗 婷,博士,副教授。E-mail:20258138@qq.com
作者简介:
赖岳飞(1996—),男,硕士研究生。主要从事工业废渣制备堇青石陶瓷材料方面的研究。E-mail:3296366998@qq.com
基金资助:
LAI Yuefei, WANG Huijun, ZENG Qiang, XIONG Chengrong, SU Xiaoli, LUO Ting
Received:
2024-05-30
Revised:
2024-07-05
Published:
2024-12-15
Online:
2024-12-19
摘要: 堇青石具有热膨胀系数低、抗热震性能良好和耐火度高等优点,广泛应用于金属冶炼、玻璃、陶瓷等领域。工业废渣原料来源广泛且价格低廉,利用工业废渣制备堇青石材料不仅能降低原料成本和缓解矿物原料消耗巨大的问题,还能解决工业废渣大量堆积引起的土地占用以及环境污染问题。本文综述了工业废渣制备高附加值的堇青石微晶玻璃、多孔陶瓷、复合材料的研究现状,对工业废渣制备堇青石基陶瓷材料的研究进展以及添加剂对工业废渣制备堇青石陶瓷材料的影响机理进行了较为系统的梳理,并总结了高温工业废渣制备堇青石材料在应用中存在的问题,为高温工业废渣的有效资源化综合利用提供方向和思路。
中图分类号:
赖岳飞, 王辉军, 曾强, 熊成荣, 苏小丽, 罗婷. 工业废渣制备堇青石基陶瓷材料研究现状[J]. 硅酸盐通报, 2024, 43(12): 4521-4531.
LAI Yuefei, WANG Huijun, ZENG Qiang, XIONG Chengrong, SU Xiaoli, LUO Ting. Progress on Cordierite Based Ceramic Materials Prepared from Industrial Wastes[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(12): 4521-4531.
[1] HOSSAIN S S, ROY P K. Fabrication of sustainable insulation refractory: utilization of different wastes[J]. Boletín De La Sociedad Española De Cerámica y Vidrio, 2019, 58(3): 115-125. [2] AŞKIN A, TATAR İ, KILINÇ Ş, et al. The utilization of waste magnesite in the production of the cordierite ceramic[J]. Energy Procedia, 2017, 107: 137-143. [3] ROMERO M, PADILLA I, CONTRERAS M, et al. Mullite-based ceramics from mining waste: a review[J]. Minerals, 2021, 11(3): 332. [4] BHATT A, PRIYADARSHINI S, ACHARATH MOHANAKRISHNAN A, et al. Physical, chemical, and geotechnical properties of coal fly ash: a global review[J]. Case Studies in Construction Materials, 2019, 11: e00263. [5] HAO J Y, HAO H L, GAO Y F, et al. Effect of sintering temperature on property of low-density ceramic proppant adding coal gangue[J]. Materials Science, 2019, 26(1): 94-98. [6] 张子英, 郝红涛. 利用工业废渣制备耐火材料的现状及进展[J]. 中国非金属矿工业导刊, 2015(2): 4-8+18. ZHANG Z Y, HAO H T. The situation and progress on refractory prepared from industrial waste[J]. China Non-metallic Minerals Industry, 2015(2): 4-8+18 (in Chinese). [7] VASILOPOULOS K C, TULYAGANOV D U, AGATHOPOULOS S, et al. Bulk nucleated fine grained mono-mineral glass-ceramics from low-silica fly ash[J]. Ceramics International, 2009, 35(2): 555-558. [8] 徐平坤. 利用煤矸石生产耐火材料[J]. 再生资源与循环经济, 2016, 9(3): 41-44. XU P K. Production of refractory materials by using coal gangue[J]. Recyclable Resources and Circular Economy, 2016, 9(3): 41-44 (in Chinese). [9] IBRET G, LEMIERE B, MENDEZ A M, et al. National mineral waste databases as an information source for assessing material recovery potential from mine waste, tailings and metallurgical waste[J]. Minerals, 2020, 10(5): 446. [10] TAYEBI-KHORAMI M, EDRAKI M, CORDER G, et al. Re-thinking mining waste through an integrative approach led by circular economy aspirations[J]. Minerals, 2019, 9(5): 286. [11] RANKIN W J. Minerals, metals and sustainability: meeting future material needs[M]. Australia: CSIRO Publishing, 2011. [12] LUAN X Z, LI J H, FENG W W, et al. Structure-controlled porous cordierite ceramics with high solid content prepared by Pickering emulsion technique using sucrose as a porogen[J]. Materials, 2022, 15(9): 3410. [13] 刘艳春. 利用铝型材厂工业废渣制备多孔陶瓷及稀土催化剂性能研究[D]. 广州: 华南理工大学, 2011. LIU Y C. Study on preparation of porous ceramics and properties of rare earth catalysts from industrial waste residue of aluminum profile factory[D]. Guangzhou: South China University of Technology, 2011 (in Chinese). [14] GHITULICA C, ANDRONESCU E, NICOLA O, et al. Preparation and characterization of cordierite powders[J]. Journal of the European Ceramic Society, 2007, 27(2/3): 711-713. [15] GOREN R, GOCMEZ H, OZGUR C. Synthesis of cordierite powder from talc, diatomite and alumina[J]. Ceramics International, 2006, 32(4): 407-409. [16] SAHEB N, LAMARA S, SAHNOUNE F, et al. Kinetics of α-cordierite formation from nano-oxide powders[J]. Ceramics International, 2022, 48(16): 23921-23930. [17] KUSCER D, BANTAN I, HROVAT M, et al. The microstructure, coefficient of thermal expansion and flexural strength of cordierite ceramics prepared from alumina with different particle sizes[J]. Journal of the European Ceramic Society, 2017, 37(2): 739-746. [18] ARIYAJINNO N, THIANSEM S. Characterization and properties of cordierite-mullite refractories from raw materials and Narathiwat clay (in Thailand)[J]. Materials Today: Proceedings, 2018, 5(6): 13948-13953. [19] 廉晓庆, 陈张乐, 王勃扬, 等. 莫来石晶须原位增强堇青石-莫来石多孔陶瓷制备[J]. 耐火材料, 2023, 57(1): 65-69. LIAN X Q, CHEN Z L, WANG B Y, et al. Preparation of mullite whisker in situ reinforced cordierite-mullite porous ceramics[J]. Refractories, 2023, 57(1): 65-69 (in Chinese). [20] 罗金荣. ZrO2对铝型材厂污泥制备刚玉-堇青石-莫来石复相材料性能的影响[J]. 耐火材料, 2021, 55(4): 335-337+353. LUO J R. Effects of ZrO2 on properties of corundum-cordierite-mullite composite phase materials prepared by sludge in aluminum profile plant[J]. Refractories, 2021, 55(4): 335-337+353 (in Chinese). [21] 罗金荣, 汪 新, 徐国栋, 等. 添加煅烧铝型材厂污泥制备刚玉-堇青石-莫来石复合陶瓷[J]. 耐火材料, 2020, 54(6): 526-528+532. LUO J R, WANG X, XU G D, et al. Synthesis of corundum-cordierite-mullite composite ceramic materials by adding calcined aluminum plant sludge[J]. Refractories, 2020, 54(6): 526-528+532 (in Chinese). [22] 刘川北, 张礼华, 谭克锋, 等. 碳铬渣合成堇青石的反应机理及结构表征[J]. 硅酸盐学报, 2015, 43(11): 1605-1610. LIU C B, ZHANG L H, TAN K F, et al. Reaction mechanism and structural characterization of cordierite synthesized from high-carbon ferrochromium slag[J]. Journal of the Chinese Ceramic Society, 2015, 43(11): 1605-1610 (in Chinese). [23] 程 灵, 肖卓豪, 肖晓东, 等. 以黏土和粉煤灰为主要原料制备低热膨胀系数堇青石基陶瓷[J]. 陶瓷学报, 2023, 44(2): 272-278. CHENG L, XIAO Z H, XIAO X D, et al. Cordierite-based ceramics with low thermal expansion coefficient from clay and coal fly ash[J]. Journal of Ceramics, 2023, 44(2): 272-278 (in Chinese). [24] ALTERARY S S, MAREI N H. Fly ash properties, characterization, and applications: a review[J]. Journal of King Saud University-Science, 2021, 33(6): 101536. [25] SHAO H, LIANG K M, ZHOU F, et al. Characterization of cordierite-based glass-ceramics produced from fly ash[J]. Journal of Non-Crystalline Solids, 2004, 337(2): 157-160. [26] LIU W, LIANG J W, FU C, et al. Waste recycling of coal fly ash: a novel approach to prepare hierarchically porous coal fly ash/Al2O3 ceramic composite with high porosity and high strength templated by emulsion-assisted self-assembly[J]. Ceramics International, 2022, 48(13): 18588-18595. [27] 桑 迪, 王爱国, 孙道胜, 等. 利用工业固体废弃物制备烧胀陶粒的研究进展[J]. 材料导报, 2016, 30(9): 110-114. SANG D, WANG A G, SUN D S, et al. Manufacturing sintering-expanded ceramsite from industrial solid wastes[J]. Materials Reports, 2016, 30(9): 110-114 (in Chinese). [28] MA D, DUAN H Y, LIU J F, et al. The role of gangue on the mitigation of mining-induced hazards and environmental pollution: an experimental investigation[J]. The Science of the Total Environment, 2019, 664: 436-448. [29] XU D M, ZHAN C L, LIU H X, et al. A critical review on environmental implications, recycling strategies, and ecological remediation for mine tailings[J]. Environmental Science and Pollution Research, 2019, 26(35): 35657-35669. [30] 张志远. 碳化硅纤维/堇青石基尾矿微晶玻璃复合材料的制备[D]. 包头: 内蒙古科技大学, 2020. ZHANG Z Y. Preparation of silicon carbide fiber/cordierite-based tailings glass-ceramics composite[D]. Baotou: Inner Mongolia University of Science & Technology, 2020 (in Chinese). [31] 吴剑芳, 李 珍, 何 航, 等. 以钾长石制备α-堇青石微晶玻璃及其性能研究[J]. 材料导报, 2013, 27(10): 124-127. WU J F, LI Z, HE H, et al. Study on fabrication and properties of α-cordierite glass-ceramic from potassium feldspar[J]. Materials Reports, 2013, 27(10): 124-127 (in Chinese). [32] LAO X B, XU X Y. Crystallization behavior and properties of non-stoichimetric cordierite glass-ceramics: effects of talc, MgO/SiO2 ratio, and Al2O3 content[J]. Materials Today Communications, 2022, 31: 103316. [33] ZANDONA A, RÜDINGER B, HOCHREIN O, et al. Crystallization and Si Al ordering in cordierite glass-ceramics[J]. Journal of Non-Crystalline Solids, 2018, 498: 160-166. [34] ZHANG Z L, MA H L, WU C L, et al. Properties of glass-ceramics prepared from industrial multi-wastes[J]. Separations, 2023, 10(9): 498. [35] GUO X Y, ZHANG Z L, SUN Y, et al. Cordierite glass-ceramics prepared by multi-wastes[J]. Journal of Physics: Conference Series, 2024: 012081. [36] XU W C, SHEN K X, CAO Z, et al. Crystallization and thermal stability effects on tailings glass-ceramics by various heat treating processes[J]. Materials Chemistry and Physics, 2021, 263: 124334. [37] TABIT K, HAJJOU H, WAQIF M, et al. Cordierite-based ceramics from coal fly ash for thermal and electrical insulations[J]. Silicon, 2021, 13(2): 327-334. [38] 姚志通. 固体废弃物粉煤灰的资源化利用[D]. 杭州: 浙江大学, 2010. YAO Z T. Resource utilization of solid waste fly ash[D]. Hangzhou: Zhejiang University, 2010 (in Chinese). [39] 金 彪, 汪 潇, 杨留栓, 等. 煤矸石制备堇青石微晶玻璃的研究[J]. 硅酸盐通报, 2014, 33(10): 2593-2596+2603. JIN B, WANG X, YANG L S, et al. Research and preparation of cordierite glass-ceramics by using coal gangues[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(10): 2593-2596+2603 (in Chinese). [40] 苏卫国. 尾矿制备MgO-Al2O3-SiO2系堇青石微晶玻璃的研究[D]. 鞍山: 辽宁科技大学, 2012. SU W G. Study on preparation of MgO-Al2O3-SiO2 cordierite glass-ceramics from tailings[D]. Anshan: University of Science and Technology Liaoning, 2012 (in Chinese). [41] 葛 灵. 珍珠岩尾矿掺杂稀土元素制备堇青石微晶玻璃及性能研究[D]. 信阳: 信阳师范学院, 2020. GE L. Preparation and properties of cordierite glass-ceramics doped with rare earth elements from perlite tailings[D]. Xinyang: Xinyang Normal University, 2020 (in Chinese). [42] 于永生. 珍珠岩尾矿制备α-堇青石微晶玻璃及其性能研究[D]. 武汉: 中国地质大学, 2019. YU Y S. Preparation of α-cordierite glass-ceramics from perlite tailings and its properties[D]. Wuhan: China University of Geosciences, 2019 (in Chinese). [43] LI B W, ZHANG Z Y, WU W L, et al. Synthesis of α-cordierite based glass-ceramic from Bayan Obo tailing and fly ash through volume crystallization[J]. IOP Conference Series: Materials Science and Engineering, 2019, 474: 012049. [44] LI X, LI Y B, XIANG R F, et al. Effect of dispersion viscosity on microstructure of cordierite foam prepared by thermo-foaming[J]. Ceramics International, 2019, 45(18): 24487-24492. [45] KHATER G A, NABAWY B S, EL-KHESHEN A A, et al. Utilizing of solid waste materials for producing porous and lightweight ceramics[J]. Materials Chemistry and Physics, 2022, 280: 125784. [46] LI X Y, SHAO J H, ZHENG J Q, et al. Fabrication and application of porous materials made from coal gangue: a review[J]. International Journal of Applied Ceramic Technology, 2023, 20(4): 2099-2124. [47] 王 璨, 彭同江, 孙红娟, 等. 石棉尾渣和粉煤灰制备堇青石多孔陶瓷及其理化性能[J]. 硅酸盐通报, 2023, 42(1): 151-161. WANG C, PENG T J, SUN H J, et al. Preparation and physicochemical properties of porous cordierite ceramics from asbestos tailings and fly ash[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(1): 151-161 (in Chinese). [48] LIU C B, LIU L B, TAN K F, et al. Fabrication and characterization of porous cordierite ceramics prepared from ferrochromium slag[J]. Ceramics International, 2016, 42(1): 734-742. [49] 石 羡. 铝灰浸出渣制备堇青石陶瓷工艺研究[D]. 沈阳: 沈阳工业大学, 2022. SHI X. Study on preparation of cordierite ceramics from leaching residue of aluminum ash[D]. Shenyang: Shenyang University of Technology, 2022 (in Chinese). [50] WANG S X, WANG H, CHEN Z W, et al. Fabrication and characterization of porous cordierite ceramics prepared from fly ash and natural minerals[J]. Ceramics International, 2019, 45(15): 18306-18314. [51] 郎敏捷. 煤矿固体废弃物泡沫陶瓷的制备和热物性研究[D]. 南昌: 南昌大学, 2016. LANG M J. Preparation and thermophysical properties of foamed ceramics from coal mine solid waste[D]. Nanchang: Nanchang University, 2016 (in Chinese). [52] WANG S, MA X Y, WANG Y L, et al. Preparation and desalination performance of porous planar cordierite membranes using industrial solid waste as main silica source[J]. Ceramics International, 2019, 45(5): 5932-5940. [53] 耿 鹏. 煤系高岭土冷冻干燥法制备多孔堇青石的研究[D]. 徐州: 中国矿业大学, 2018. GENG P. Study on preparation of porous cordierite by freeze-drying of coal-series kaolin[D]. Xuzhou: China University of Mining and Technology, 2018 (in Chinese). [54] LI H, LI J W, LI C W, et al. Near net shape fabrication of porous cordierite by combination of foam gel-casting and freeze-drying[J]. International Journal of Applied Ceramic Technology, 2021, 18(6): 2121-2131. [55] DA SILVA V J, DE ALMEIDA E P, GONÇALVES W P, et al. Mineralogical and dielectric properties of mullite and cordierite ceramics produced using wastes[J]. Ceramics International, 2019, 45(4): 4692-4699. [56] CHERAITIA A, REDJIMI Z, BOUOUDINA M. Novel mullite-cordierite ceramic refractory fabricated from halloysite and talc[J]. International Journal of Applied Ceramic Technology, 2021, 18(1): 70-80. [57] LIU J, DONG Y C, DONG X F, et al. Feasible recycling of industrial waste coal fly ash for preparation of anorthite-cordierite based porous ceramic membrane supports with addition of dolomite[J]. Journal of the European Ceramic Society, 2016, 36(4): 1059-1071. [58] WU Q S, SUN H. Preparation and properties of porous ceramics from nickel slag by aerogel gelcasting[J]. Ceramics International, 2022, 48(22): 33058-33065. [59] WU Q S, CHEN Q J, HUANG Z C, et al. Preparation and characterization of porous ceramics from nickel smelting slag and metakaolin[J]. Ceramics International, 2020, 46(4): 4581-4586. [60] DE BRITO I P, DE ALMEIDA E P, DE ARAÚJO NEVES G, et al. Development of cordierite/mullite composites using industrial wastes[J]. International Journal of Applied Ceramic Technology, 2021, 18(1): 253-261. [61] 杨彦龙, 马爱琼, 高云琴, 等. 以煤矸石为原料制备堇青石-莫来石复合材料[J]. 非金属矿, 2022, 45(4): 5-9. YANG Y L, MA A Q, GAO Y Q, et al. Preparation of cordierite-mullite composites using coal gangue as materials[J]. Non-Metallic Mines, 2022, 45(4): 5-9 (in Chinese). [62] LIU J C, XU J M, ZHANG Y B, et al. Co-utilization of secondary aluminum dross and ferronickel slag for preparation of cordierite-mullite insulating ceramic[J]. Journal of the American Ceramic Society, 2023, 106(3): 2049-2060. [63] LUO T, CAO Z M, SU X L, et al. In-situ crystallization of ferrochrome slag and quartz for preparing cordierite materials[J]. Ceramics International, 2023, 49(11): 19149-19159. [64] 杨 益. 多种固废协同制备复相多孔陶瓷工艺及性能研究[D]. 绵阳: 西南科技大学, 2022. YANG Y. Study on the technology and properties of multiphase porous ceramics prepared by various solid wastes in cooperation[D]. Mianyang: Southwest University of Science and Technology, 2022 (in Chinese). [65] SADEK H E H, ZAWRAH M F, KHATTAB R M, et al. Effect of CuO, NiO, MnO2 and sintering temperature on the formation of cordierite-spinel composites processed by direct coagulation casting[J]. Journal of Materials Science: Materials in Electronics, 2023, 34(15): 1196. [66] 李嘉怡, 刘阳桥, 常启兵, 等. 氟锆酸钾加入量对粉煤灰基堇青石陶瓷性能的影响[J]. 耐火材料, 2022, 56(6): 461-466. LI J Y, LIU Y Q, CHANG Q B, et al. Effect of potassium fluorozirconate addition on properties of fly ash based cordierite ceramics[J]. Refractories, 2022, 56(6): 461-466 (in Chinese). [67] 常星岚, 顾雅洁, 孙盛睿, 等. 氟锆酸钾加入量对粉煤灰基发泡陶瓷性能的影响[J]. 耐火材料, 2023, 57(3): 194-199. CHANG X L, GU Y J, SUN S R, et al. Effect of potassium hexafluorozirconate addition on properties of foamed ceramics from fly ash[J]. Refractories, 2023, 57(3): 194-199 (in Chinese). [68] ZHANG W Q, LI S P, BAO H, et al. Study on the reaction process and mechanism of the system of cordierite with zirconia[J]. Ceramics International, 2019, 45(4): 5066-5071. [69] WANG L L, MA B Y, REN X M, et al. Phase-engineering strategy of ZrO2 for enhancing the mechanical properties of porous cordierite ceramics[J]. Materials Today Communications, 2022, 30: 103032. [70] LIU M W, YANG X, ZHAO L W, et al. Effect of alkaline oxides (CaO and MgO) on the mechanical properties of SiC-based foam ceramics[J]. Ceramics International, 2024, 50(7): 10152-10159. |
[1] | 陈宇, 宋学伟, 吴佳梁. 抗收缩ECC单轴拉压力学性能及损伤本构模型[J]. 硅酸盐通报, 2024, 43(9): 3137-3148. |
[2] | 陈考翔, 王明忠, 饶宇, 崔佳琳, 陶海征, 陆平. ZnO对尖晶石微晶玻璃的析晶和性能影响[J]. 硅酸盐通报, 2024, 43(9): 3446-3454. |
[3] | 慕儒, 范春豪, 王晓伟, 陈向上, 卿龙邦, 梅少林, 曹诚祥, 刘海洋. 数字化分布钢纤维增强水泥基复合材料方凳数值模拟研究[J]. 硅酸盐通报, 2024, 43(8): 2827-2834. |
[4] | 王彦朝, 吕景辉, 王英倡, 郭永昌. PE/PP混杂纤维应变硬化碱激发复合材料力学性能研究[J]. 硅酸盐通报, 2024, 43(8): 2879-2887. |
[5] | 吴寅佳, 王新杰, 朱平华, 孙伟豪, 熊磊. 再生细骨料对高延性水泥基复合材料力学性能及碳化耐久性的影响[J]. 硅酸盐通报, 2024, 43(8): 2984-2995. |
[6] | 黄海铭, 杜静, 谢捷洋, 陈情泽, 朱润良. 硅灰制备硅/碳化硅纳米复合材料及其储锂性能研究[J]. 硅酸盐通报, 2024, 43(8): 3053-3062. |
[7] | 朱保顺, 田玉明, 牟维鹏, 高云峰, 丰铭, 李慧宇. 利用粉煤灰制备Ni负载的微波吸收材料[J]. 硅酸盐通报, 2024, 43(8): 3089-3097. |
[8] | 陈卓异, 寇子豪, 熊永明, 易宏健, 曹先慧. 定向钢纤维水泥基复合材料的含砂率及定向时程影响规律[J]. 硅酸盐通报, 2024, 43(7): 2346-2354. |
[9] | 孙嘉琦, 刘曦, 王传林, 苏芝棋, 鲁鑫, 麦靖敏. 硅烷偶联剂改性聚丙烯纤维水泥基复合材料的性能研究[J]. 硅酸盐通报, 2024, 43(7): 2355-2362. |
[10] | 车佳玲, 吴杰, 谷家威, 黄宇, 刘海峰. 玄武岩织物-钢-PVA工程水泥基复合材料单轴受压力学性能研究[J]. 硅酸盐通报, 2024, 43(7): 2363-2371. |
[11] | 黄学辉, 陈文臻, 邓鹏辉, 胡祥奥. 钛酸铝-堇青石复相陶瓷的制备和性能研究[J]. 硅酸盐通报, 2024, 43(6): 2241-2249. |
[12] | 王海涛, 林晨, 樊子民, 唐明强, 赵放, 乐晨, 陈义华, 黄源成. SiC含量对铝基复合材料性能的影响[J]. 硅酸盐通报, 2024, 43(6): 2256-2261. |
[13] | 赵翔鹏, 李辉, 杨青原, 刘元珍, 葛智, 姜能栋, 张洪智. 基于格构模型理论的单纤维拉拔试验建模及仿真[J]. 硅酸盐通报, 2024, 43(5): 1850-1858. |
[14] | 张泽, 张明瑜, 方婉娴, 徐平, 曾晨, 高莹, 苏哲安, 黄启忠. 高韧性炭/炭复合材料的制备及研究[J]. 硅酸盐通报, 2024, 43(5): 1928-1936. |
[15] | 任贝贝, 刘亚鑫, 黄欣, 王霆, 王娜, 姜宏, 熊春荣, 郝红勋. Li2O-Al2O3-SiO2系微晶玻璃的研究进展[J]. 硅酸盐通报, 2024, 43(4): 1181-1196. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||