硅酸盐通报 ›› 2024, Vol. 43 ›› Issue (12): 4271-4284.
• 水泥混凝土 • 下一篇
常硕1, 王露1, 李新宇2, 李茂森1, 刘数华1
收稿日期:
2024-06-14
修订日期:
2024-07-28
出版日期:
2024-12-15
发布日期:
2024-12-19
通信作者:
刘数华,博士,教授。E-mail:shliu@whu.edu.cn
作者简介:
常 硕(2000—),女,博士研究生。主要从事新型胶凝材料和混凝土耐久性等方面的研究。E-mail:changshuo@whu.edu.cn
基金资助:
CHANG Shuo1, WANG Lu1, LI Xinyu2, LI Maosen1, LIU Shuhua1
Received:
2024-06-14
Revised:
2024-07-28
Published:
2024-12-15
Online:
2024-12-19
摘要: 超硫酸盐水泥是一种绿色、低碳胶凝材料,具有低能耗、低水化热以及高抗化学侵蚀性能等优点。本文主要介绍了超硫酸盐水泥的组分、早期水化特性、力学性能和耐化学侵蚀特性等。通过与硅酸盐水泥基材料对比,重点评述了超硫酸盐水泥基材料的耐化学侵蚀劣化特性,包括溶出性侵蚀、一般酸性侵蚀和硫酸盐侵蚀,在此基础上进一步总结了超硫酸盐水泥基材料的侵蚀劣化机理,为超硫酸盐水泥基材料在不同环境中的工程应用提供理论指导。
中图分类号:
常硕, 王露, 李新宇, 李茂森, 刘数华. 超硫酸盐水泥基材料耐化学侵蚀特性综述[J]. 硅酸盐通报, 2024, 43(12): 4271-4284.
CHANG Shuo, WANG Lu, LI Xinyu, LI Maosen, LIU Shuhua. A Review of Chemical Attack Resistance of Supersulfated Cement-Based Materials[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(12): 4271-4284.
[1] 中国建筑材料联合会. 中国建筑材料工业碳排放报告(2020年度)[J]. 建筑, 2021(8): 21-23. China Building Materials Federation. Carbon emission report of China building materials industry (2020)[J]. Construction and Architecture, 2021(8): 21-23 (in Chinese). [2] SCRIVENER K L, JOHN V M, GARTNER E M. Eco-efficient cements: potential economically viable solutions for a low-CO2 cement-based materials industry[J]. Cement and Concrete Research, 2018, 114: 2-26. [3] ISHAK S A, HASHIM H. Low carbon measures for cement plant: a review[J]. Journal of Cleaner Production, 2015, 103: 260-274. [4] 聂 松, 周 健, 徐名凤, 等. 低碳胶凝材料的研究进展[J]. 材料导报, 2024, 38(2): 60-68. NIE S, ZHOU J, XU M F, et al. Research progress of low-carbon binders[J]. Materials Reports, 2024, 38(2): 60-68 (in Chinese). [5] 王 露, 涂拥军, 高富豪, 等. 改性磷石膏对超硫酸盐水泥水化特性的影响[J]. 材料导报, 2024, 38(14): 142-147. WANG L, TU Y J, GAO F H, et al. Effect of modified phosphogypsum on hydration characteristics of supersulfated cement[J]. Materials Reports, 2024, 38(14): 142-147 (in Chinese). [6] 韩宇栋, 张 君, 高 原. 混凝土抗硫酸盐侵蚀研究评述[J]. 混凝土, 2011(1): 52-56+61. HAN Y D, ZHANG J, GAO Y. Review of sulfate attack on concrete[J]. Concrete, 2011(1): 52-56+61 (in Chinese). [7] 胡宁宁. 含石灰石粉水泥基材料在复合侵蚀下的劣化机制[D]. 武汉: 武汉大学, 2015: 7. HU N N. Degradation mechanisms of cement-based materials containing limestone powder under complex erosion[D]. Wuhan: Wuhan University, 2015: 7 (in Chinese). [8] BAE S H, PARK J I, LEE K M. Influence of mineral admixtures on the resistance to sulfuric acid and sulfate attack in concrete[J]. Journal of the Korea Concrete Institute, 2010, 22(2): 219-228. [9] 彭艳周, 丁庆军, 胡曙光. 硫铝酸盐水泥早强微膨胀钢管混凝土的制备[J]. 建筑材料学报, 2008, 11(6): 636-641. PENG Y Z, DING Q J, HU S G. Preparation of steel tube-confined concrete with high early-strength and micro expansion by using sulphoaluminate cement[J]. Journal of Building Materials, 2008, 11(6): 636-641 (in Chinese). [10] 陆建鑫, 水中和, 田素芳, 等. 超硫酸盐水泥与波特兰水泥混凝土显微结构与性能的比较研究[J]. 武汉理工大学学报, 2013, 35(5): 1-7. LU J X, SHUI Z H, TIAN S F, et al. Investigation of the microstructure and property for supersulphated cement concrete and the Portland cement concrete[J]. Journal of Wuhan University of Technology, 2013, 35(5): 1-7 (in Chinese). [11] MATSCHEI T, BELLMANN F, STARK J. Hydration behaviour of sulphate-activated slag cements[J]. Advances in Cement Research, 2005, 17(4): 167-178. [12] PINTO S R, ANGULSKI DA LUZ C, MUNHOZ G S, et al. Durability of phosphogypsum-based supersulfated cement mortar against external attack by sodium and magnesium sulfate[J]. Cement and Concrete Research, 2020, 136: 106172. [13] 许长红, 王 露, 刘数华. 一种超低水化热水泥: 超硫酸盐水泥[J]. 混凝土世界, 2017(10): 38-42. XU C H, WANG L, LIU S H. Ultra-low hydration heat cement-super sulfate cement[J]. China Concrete, 2017(10): 38-42 (in Chinese). [14] WU Q Y, XUE Q Z, YU Z Q. Research status of super sulfate cement[J]. Journal of Cleaner Production, 2021, 294: 126228. [15] GROUNDS T, NOWELL D V, WILBURN F W. Resistance of supersulfated cement to strong sulfate solutions[J]. Journal of Thermal Analysis and Calorimetry, 2003, 72(1): 181-190. [16] 方佩佩, 刘数华. 改性磷石膏基超硫酸盐水泥研究进展[J]. 硅酸盐通报, 2019, 38(8): 2430-2434+2441. FANG P P, LIU S H. Research progress of modified phosphogypsum-based supersulfated cement[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(8): 2430-2434+2441 (in Chinese). [17] 赵青林, 周明凯, FISCHER H-B, 等. 超硫酸盐水泥在德国的研究与应用[J]. 新世纪水泥导报, 2008, 14(6): 5-10. ZHAO Q L, ZHOU M K, FISCHER H-B, et al. Research and application of supersulphated cement in Germany[J]. Cement Guide for New Epoch, 2008, 14(6): 5-10 (in Chinese). [18] RUBERT S, ANGULSKI DA LUZ C, VARELA M V F, et al. Hydration mechanisms of supersulfated cement[J]. Journal of Thermal Analysis and Calorimetry, 2018, 134(2): 971-980. [19] 刘数华, 王 露, 余保英. 超硫酸盐水泥的水化机理及工程应用综述[J]. 混凝土世界, 2018(10): 46-51. LIU S H, WANG L, YU B Y. Summary of hydration mechanism and engineering application of supersulfate cement[J]. China Concrete, 2018(10): 46-51 (in Chinese). [20] 王 露, 刘数华. 钙矾石相的研究综述[J]. 混凝土, 2013(8): 83-86+90. WANG L, LIU S H. Research review on ettringite phase[J]. Concrete, 2013(8): 83-86+90 (in Chinese). [21] 余保英, 高育欣, 王 军. 含不同石膏种类的超硫酸盐水泥的水化行为[J]. 建筑材料学报, 2014, 17(6): 965-971. YU B Y, GAO Y X, WANG J. Hydration behavior of super sulphated cement with different types of gypsum[J]. Journal of Building Materials, 2014, 17(6): 965-971 (in Chinese). [22] LIAO Y S, YAO J X, DENG F, et al. Hydration behavior and strength development of supersulfated cement prepared by calcined phosphogypsum and slaked lime[J]. Journal of Building Engineering, 2023, 80: 108075. [23] WANG Q, SUN S K, YAO G, et al. Preparation and characterization of an alkali-activated cementitious material with blast-furnace slag, soda sludge, and industrial gypsum[J]. Construction and Building Materials, 2022, 340: 127735. [24] WANG S, WU J, WU X, et al. , The use of supersulfated cement(SSC) in mass concrete, International Symposium on Materials Application and Engineering (SMAE), Chiang Mai, THAILAND, 2016. [25] 高育欣, 王 淑, 吴 雄, 等. 改性超硫酸盐水泥在大体积混凝土中的应用研究[J]. 混凝土与水泥制品, 2015(7): 11-14. GAO Y X, WANG S, WU X, et al. Application study on modified supersulfated cement in mass concrete[J]. China Concrete and Cement Products, 2015(7): 11-14 (in Chinese). [26] LIU S H, WANG L. Investigation on strength and pore structure of supersulfated cement paste[J]. Materials Science, 2018, 24(3): 319-326. [27] 王 露. 超硫酸盐水泥水化特性研究[D]. 武汉: 武汉大学, 2015. WANG L. Study on hydration characteristics of supersulfated cement[D]. Wuhan: Wuhan University, 2015 (in Chinese). [28] 成希弼, 缪纪生. 石膏矿渣水泥强度发展的研究[J]. 硅酸盐学报, 1962(4): 175-189. CHENG S B, MIU J S. Study on strength development of gypsum slag cement[J]. Journal of the Chinese Ceramic Society, 1962(4): 175-189 (in Chinese). [29] 刘仁越, 王 珊, 张同生, 等. 消石灰、无水石膏与石灰石粉对矿渣水泥性能的影响[J]. 水泥, 2009(8): 4-6. LIU R Y, WANG S, ZHANG T S, et al. Effect of hydrated lime, anhydrite and limestone powder on performance of slag cement[J]. Cement, 2009(8): 4-6 (in Chinese). [30] 孙正宁, 周 健, 慕 儒, 等. 新型超硫酸盐水泥水化硬化机理[J]. 硅酸盐通报, 2019, 38(8): 2362-2368. SUN Z N, ZHOU J, MU R, et al. Hydration and hardening mechanisms of newly developed supersulfated cement[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(8): 2362-2368 (in Chinese). [31] ERDEM E, ÖLMEZ H. The mechanical properties of supersulphated cement containing phosphogypsum[J]. Cement and Concrete Research, 1993, 23(1): 115-121. [32] 陈 宇, 季军荣, 周 洲, 等. 超硫酸盐水泥早期强度影响因素及提高途径[J]. 硅酸盐通报, 2021, 40(5): 1413-1419. CHEN Y, JI J R, ZHOU Z, et al. Influencing factors and enhancement methods of early strength of supersulfated cement[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(5): 1413-1419 (in Chinese). [33] SAJEDI F, RAZAK H A. The effect of chemical activators on early strength of ordinary Portland cement-slag mortars[J]. Construction and Building Materials, 2010, 24(10): 1944-1951. [34] 郭玉萍, 王海波, 牛全林. 超硫酸盐水泥的组成、制备及性能[J]. 工程质量, 2016, 34(11): 66-68. GUO Y P, WANG H B, NIU Q L. Composition, preparation and properties of supersulfated cement[J]. Construction Quality, 2016, 34(11): 66-68 (in Chinese). [35] MASOUDI R, HOOTON R D. Examining the hydration mechanism of supersulfated cements made with high and low-alumina slags[J]. Cement and Concrete Composites, 2019, 103: 193-203. [36] MANMOHAN D, MEHTA P K. Influence of pozzolanic, slag, and chemical admixtures on pore size distribution and permeability of hardened cement pastes[J]. Cement, Concrete, and Aggregates, 1981, 3(1): 63-67. [37] CHOI Y C, KIM J, CHOI S. Mercury intrusion porosimetry characterization of micropore structures of high-strength cement pastes incorporating high volume ground granulated blast-furnace slag[J]. Construction and Building Materials, 2017, 137: 96-103. [38] 高育欣, 余保英, 王 军. 超硫酸盐水泥的水化产物及孔结构特性[J]. 土木建筑与环境工程, 2014, 36(3): 118-122. GAO Y X, YU B Y, WANG J. Characteristics of hydration products and pore structure of super sulphated cement[J]. Journal of Civil and Environmental Engineering, 2014, 36(3): 118-122 (in Chinese). [39] 孙宇飞, 张 勇, 纪光磊, 等. 水泥基材料溶出性侵蚀特性研究[J]. 水力发电, 2018, 44(1): 110-113. SUN Y F, ZHANG Y, JI G L, et al. Study on dissolved erosion characteristic of cement based materials[J]. Water Power, 2018, 44(1): 110-113 (in Chinese). [40] LIN W T, CHENG A, HUANG R, et al. Effect of calcium leaching on the properties of cement-based composites[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2011, 26(5): 990-997. [41] ZHENG L F, WANG J J, LI K F, et al. Advances in the experiments of leaching in cement-based materials and dissolution in rocks[J]. Materials, 2023, 16(24): 7697. [42] JIN M, MA Y F, LI W W, et al. Degradation of C-S-H(I) at different decalcification degrees[J]. Journal of Materials Science, 2022, 57(41): 19260-19279. [43] HUANG B, QIAN C X. Experiment study of chemo-mechanical coupling behavior of leached concrete[J]. Construction and Building Materials, 2011, 25(5): 2649-2654. [44] ZHANG W B, SHI D D, SHEN Z Z, et al. Effect of calcium leaching on the fracture properties of concrete[J]. Construction and Building Materials, 2023, 365: 130018. [45] 孙国文, 孙 伟, 张云升, 等. 硅酸盐水泥水化产物体积分数定量计算[J]. 东南大学学报(自然科学版), 2011, 41(3): 606-610. SUN G W, SUN W, ZHANG Y S, et al. Quantitative calculation on volume fraction of hydrated products in Portland cement[J]. Journal of Southeast University (Natural Science Edition), 2011, 41(3): 606-610 (in Chinese). [46] 邓中正, 杨华全, 李 响, 等. 水泥基材料的溶蚀劣化研究进展与评述[J]. 人民长江, 2016, 47(18): 101-105. DENG Z Z, YANG H Q, LI X, et al. Research progress and review on corrosion and degradation of cement-based materials[J]. Yangtze River, 2016, 47(18): 101-105 (in Chinese). [47] PINTO S R, DA LUZ C A, MUNHOZ G S, et al. Resistance of phosphogypsum-based supersulfated cement to carbonation and chloride ingress[J]. Construction and Building Materials, 2020, 263: 120640. [48] 李丽华, 刘数华. 石灰石粉对水泥石抗酸性侵蚀机理的影响研究[J]. 人民长江, 2014, 45(12): 77-80. LI L H, LIU S H. Study on influence of limestone powder on acid resistance mechanism of cement paste[J]. Yangtze River, 2014, 45(12): 77-80 (in Chinese). [49] WANG A G, ZHENG Y, ZHANG Z H, et al. The durability of alkali-activated materials in comparison with ordinary Portland cements and concretes: a review[J]. Engineering, 2020, 6(6): 695-706. [50] 唐咸燕, 肖 佳, 陈 烽. 酸沉降对混凝土耐久性的影响及研究进展[J]. 材料导报, 2006, 20(10): 97-101. TANG X Y, XIAO J, CHEN F. Effect and research progress of acid deposition on concrete durability[J]. Materials Reports, 2006, 20(10): 97-101 (in Chinese). [51] MARCOS-MESON V, FISCHER G, EDVARDSEN C, et al. Durability of steel fibre reinforced concrete (SFRC) exposed to acid attack: a literature review[J]. Construction and Building Materials, 2019, 200: 490-501. [52] 齐秋霖, 周 健, 葛仲熙, 等. 硫铝酸盐水泥抗酸侵蚀性能与机理研究[J]. 硅酸盐通报, 2021, 40(8): 2508-2514+2533. QI Q L, ZHOU J, GE Z X, et al. Performance and resistance mechanism of calcium sulfoaluminate cement subjected to acids[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(8): 2508-2514+2533 (in Chinese). [53] GABRISOVÁ A, HAVLICA J, SAHU S. Stability of calcium sulphoaluminate hydrates in water solutions with various pH values[J]. Cement and Concrete Research, 1991, 21(6): 1023-1027. [54] MOCKBИH B M. 混凝土和钢筋混凝土的腐蚀及其防护方法[M]. 北京: 化学工业出版社, 1988. MOCKBИH B M. Corrosion and protection methods of concrete and reinforced concrete[M]. Beijing: Chemical Industry Press, 1988 (in Chinese). [55] YANG Y, JI T, LIN X J, et al. Biogenic sulfuric acid corrosion resistance of new artificial reef concrete[J]. Construction and Building Materials, 2018, 158: 33-41. [56] PEYRONNARD O, BENZAAZOUA M, BLANC D, et al. Study of mineralogy and leaching behavior of stabilized/solidified sludge using differential acid neutralization analysis[J]. Cement and Concrete Research, 2009, 39(7): 600-609. [57] REVERTEGAT E, RICHET C, GÉGOUT P. Effect of pH on the durability of cement pastes[J]. Cement and Concrete Research, 1992, 22(2/3): 259-272. [58] REARDON E J. An ion interaction model for the determination of chemical equilibria in cement/water systems[J]. Cement and Concrete Research, 1990, 20(2): 175-192. [59] CAMILLERI J. Characterization of modified calcium-silicate cements exposed to acidic environment[J]. Materials Characterization, 2011, 62(1): 70-75. [60] MORANVILLE M, KAMALI S, GUILLON E. Physicochemical equilibria of cement-based materials in aggressive environments—experiment and modeling[J]. Cement and Concrete Research, 2004, 34(9): 1569-1578. [61] MUTHU M, YANG E H, UNLUER C. Resistance of graphene oxide-modified cement pastes to hydrochloric acid attack[J]. Construction and Building Materials, 2021, 273: 121990. [62] ZIVICA V, PALOU M T, KRIZMA M, et al. Acidic attack of cement based materials under the common action of high, ambient temperature and pressure[J]. Construction and Building Materials, 2012, 36: 623-629. [63] GUTBERLET T, HILBIG H, BEDDOE R E. Acid attack on hydrated cement—effect of mineral acids on the degradation process[J]. Cement and Concrete Research, 2015, 74: 35-43. [64] MASOUDI R, HOOTON R D. Influence of alkali lactates on hydration of supersulfated cement[J]. Construction and Building Materials, 2020, 239: 117844. [65] 彭家惠, 楼宗汉. 钙矾石形成机理的研究[J]. 硅酸盐学报, 2000, 28(6): 511-515. PENG J H, LOU Z H. Study on the mechanism of ettringite formation[J]. Journal of the Chinese Ceramic Society, 2000, 28(6): 511-515 (in Chinese). [66] 高富豪, 王 露, 刘数华. 超硫酸盐水泥净浆的酸性侵蚀劣化机制[J]. 硅酸盐通报, 2022, 41(8): 2618-2627. GAO F H, WANG L, LIU S H. Deterioration mechanism of supersulfated cement paste by acid erosion[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(8): 2618-2627 (in Chinese). [67] 邓德华, 刘赞群, SCHUTTER G D, 等. 关于“混凝土硫酸盐结晶破坏”理论的研究进展[J]. 硅酸盐学报, 2012, 40(2): 175-185. DENG D H, LIU Z Q, SCHUTTER G D, et al. Research progress on theory of “sulfate salt weathering on concrete”[J]. Journal of the Chinese Ceramic Society, 2012, 40(2): 175-185 (in Chinese). [68] MAES M, DE BELIE N. Resistance of concrete and mortar against combined attack of chloride and sodium sulphate[J]. Cement and Concrete Composites, 2014, 53: 59-72. [69] GU Y S, MARTIN R P, METALSSI O O, et al. Pore size analyses of cement paste exposed to external sulfate attack and delayed ettringite formation[J]. Cement and Concrete Research, 2019, 123: 105766. [70] ZHANG Z Y, ZHOU J T, YANG J, et al. Understanding of the deterioration characteristic of concrete exposed to external sulfate attack: insight into mesoscopic pore structures[J]. Construction and Building Materials, 2020, 260: 119932. [71] HAUFE J, VOLLPRACHT A. Tensile strength of concrete exposed to sulfate attack[J]. Cement and Concrete Research, 2019, 116: 81-88. [72] IRBE L, BEDDOE R E, HEINZ D. The role of aluminium in C-A-S-H during sulfate attack on concrete[J]. Cement and Concrete Research, 2019, 116: 71-80. [73] 金雁南, 周双喜. 混凝土硫酸盐侵蚀的类型及作用机理[J]. 华东交通大学学报, 2006, 23(5): 4-8. JIN Y N, ZHOU S X. Types and mechanism of concrete sulfate attack[J]. Journal of East China Jiaotong University, 2006, 23(5): 4-8 (in Chinese). [74] BICZÓK I. Concrete corrosion and concrete protection[M]. New York: Budapest: Akademiai Kiado, 1967. [75] YU C, SUN W, SCRIVENER K. Mechanism of expansion of mortars immersed in sodium sulfate solutions[J]. Cement and Concrete Research, 2013, 43: 105-111. [76] JAIN N, GARG M. Formulation of sulphate resistant super sulphated cement using fluorogypsum and granulated blast furnace slag[J]. IOSR Journal of Mechanical and Civil Engineering, 2015, 12(3): 153-159. [77] 席耀忠. 近年来水泥化学的新进展——记第九届国际水泥化学会议[J]. 硅酸盐学报, 1993(6): 577-588. XI Y Z. New progress in cement chemistry in recent years—the 9th International Cement Chemistry Conference[J]. Journal of the Chinese Ceramic Society, 1993(6): 577-588 (in Chinese). [78] ZHANG G Z, WU C, HOU D S, et al. Effect of environmental pH values on phase composition and microstructure of Portland cement paste under sulfate attack[J]. Composites Part B: Engineering, 2021, 216: 108862. [79] 程星星. 硫酸盐侵蚀下石膏的形成对水泥基材料性能的影响[D]. 合肥: 安徽建筑大学, 2019. CHENG X X. Effect of gypsum formation on properties of cement-based materials under sulfate attack[D]. Hefei: Anhui Jianzhu University, 2019 (in Chinese). [80] CHANG S, GAO F H, WANG L, et al. Deterioration mechanism of supersulfated cement paste exposed to sulfate attack and combined acid-sulfate attack[J]. Construction and Building Materials, 2024, 414: 134978. [81] WANG L, GAO Z Y, GAO F H, et al. Comparing study on the evolution characteristics of performance and microstructure between Portland slag cement and supersulfated cement under chemical attacks[J]. Construction and Building Materials, 2024, 425: 135969. [82] 严海彬. 水泥混凝土TSA侵蚀影响因素研究[J]. 四川建材, 2009, 35(4): 2-4. YAN H B. Research on influence factor of the thaumasite form of sulfate attack on cement concrete[J]. Sichuan Building Materials, 2009, 35(4): 2-4 (in Chinese). [83] SHI C J, WANG D H, BEHNOOD A. Review of thaumasite sulfate attack on cement mortar and concrete[J]. Journal of Materials in Civil Engineering, 2012, 24(12): 1450-1460. [84] HARTSHORN S A, SHARP J H, SWAMY R N. The thaumasite form of sulfate attack in Portland-limestone cement mortars stored in magnesium sulfate solution[J]. Cement and Concrete Composites, 2002, 24(3/4): 351-359. [85] RAHMAN M M, BASSUONI M T. Thaumasite sulfate attack on concrete: mechanisms, influential factors and mitigation[J]. Construction and Building Materials, 2014, 73: 652-662. [86] BENSTED J. Thaumasite-direct, woodfordite and other possible formation routes[J]. Cement and Concrete Composites, 2003, 25(8): 873-877. [87] 邓德华, 肖 佳, 元 强, 等. 水泥基材料中的碳硫硅钙石[J]. 建筑材料学报, 2005, 8(4): 400-409. DENG D H, XIAO J, YUAN Q, et al. On thaumasite in cementitious materials[J]. Journal of Building Materials, 2005, 8(4): 400-409 (in Chinese). [88] 高小建, 马保国, 邓红卫. 胶凝材料组成对混凝土TSA硫酸盐侵蚀的影响[J]. 哈尔滨工业大学学报, 2007, 39(10): 1554-1558. GAO X J, MA B G, DENG H W. Influence of binder composition on the thaumasite form of sulfate attack of concrete[J]. Journal of Harbin Institute of Technology, 2007, 39(10): 1554-1558 (in Chinese). [89] 吴 萌, 张云升, 刘志勇, 等. 水泥基材料碳硫硅钙石型硫酸盐侵蚀的研究进展[J]. 硅酸盐学报, 2022, 50(8): 2270-2283. WU M, ZHANG Y S, LIU Z Y, et al. Research progress on thaumasite form of sulfate attack in cement-based materials[J]. Journal of the Chinese Ceramic Society, 2022, 50(8): 2270-2283 (in Chinese). [90] 付浩兵. 水泥基材料抗TSA侵蚀性能及机理的研究[D]. 武汉: 武汉理工大学, 2014. FU H B. Study on TSA corrosion resistance and mechanism of cement-based materials[D]. Wuhan: Wuhan University of Technology, 2014 (in Chinese). [91] 陈 达, 俞小彤, 廖迎娣, 等. 混凝土硫酸盐侵蚀研究进展[J]. 重庆交通大学学报(自然科学版), 2016, 35(2): 24-30. CHEN D, YU X T, LIAO Y D, et al. Progress of study on sulfate attack on concrete materials[J]. Journal of Chongqing Jiaotong University (Natural Science), 2016, 35(2): 24-30 (in Chinese). [92] 梁咏宁, 袁迎曙. 硫酸盐侵蚀环境因素对混凝土性能退化的影响[J]. 中国矿业大学学报, 2005, 34(4): 452-457. LIANG Y N, YUAN Y S. Effects of environmental factors of sulfate attack on deterioration of concrete mechanical behavior[J]. Journal of China University of Mining & Technology, 2005, 34(4): 452-457 (in Chinese). [93] 吴福飞, 侍克斌, 董双快, 等. 硫酸盐镁盐复合侵蚀后混凝土的微观形貌特征[J]. 农业工程学报, 2015, 31(9): 140-146. WU F F, SHI K B, DONG S K, et al. Microstructure characteristics of concrete after erosion of magnesium salts and sulfates[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(9): 140-146 (in Chinese). [94] WU M, ZHANG Y S, JI Y S, et al. A comparable study on the deterioration of limestone powder blended cement under sodium sulfate and magnesium sulfate attack at a low temperature[J]. Construction and Building Materials, 2020, 243: 118279. [95] DEHWAH H A F. Effect of sulfate concentration and associated cation type on concrete deterioration and morphological changes in cement hydrates[J]. Construction and Building Materials, 2007, 21(1): 29-39. [96] BELLMANN F, MÖSER B, STARK J. Influence of sulfate solution concentration on the formation of gypsum in sulfate resistance test specimen[J]. Cement and Concrete Research, 2006, 36(2): 358-363. [97] SANTHANAM M, COHEN M D, OLEK J. Sulfate attack research—whither now?[J]. Cement and Concrete Research, 2001, 31(6): 845-851. [98] 高富豪. 超硫酸盐水泥基材料在化学侵蚀条件下的劣化特性[D]. 武汉: 武汉大学, 2023: 55. GAO F H. Degradation mechanism of supersulfated cement-based material in chemical attack[D]. Wuhan: Wuhan University, 2023: 55 (in Chinese). [99] TRENTIN P O, MAGRO I C, SOUZA L R M N, et al. Influence of content and source of calcium sulfate on supersulfated cement exposed to sodium and magnesium sulfate attack at later ages[J]. Journal of Materials in Civil Engineering, 2023, 35(1): 253071791. [100] CERULLI T, PISTOLESI C, MALTESE C, et al. Durability of traditional plasters with respect to blast furnace slag-based plaster[J]. Cement and Concrete Research, 2003, 33(9): 1375-1383. [101] 高育欣, 余保英, 徐芬莲, 等. 超硫酸盐水泥在国内外的研究与应用现状[C] //2011年混凝土与水泥制品学术讨论会, 中国江苏无锡, 2011, 7. GAO Y X, YU B Y, XU F L, et al. Research and application of supersulphate cement(SSC) at home and abroad[C] //2011 Concrete and Cement Products Symposium, Wuxi, Jiangsu, China, 2011, 7 (in Chinese). |
[1] | 窦占双, 魏力, 王梦梦, 王冲, 贾小龙, 门光誉, 李瑞杰. 煤气化渣替代矿渣制备超硫酸盐水泥的可行性研究[J]. 硅酸盐通报, 2024, 43(8): 2952-2960. |
[2] | 王若愚, 王焕焕, 陈衡, 侯鹏坤, 李贝贝. 纳米二氧化硅对超硫酸盐水泥中石膏最佳掺量的影响[J]. 硅酸盐通报, 2024, 43(3): 995-1002. |
[3] | 刘茂军, 许国平. 植物纤维增强混凝土性能研究进展[J]. 硅酸盐通报, 2024, 43(10): 3499-3509. |
[4] | 武双磊, 季军荣, 周威杰, 陈宇, 周润铎, 周洲, 陈胡星. 乳酸钠对超硫酸盐水泥强度的影响及作用机理[J]. 硅酸盐通报, 2022, 41(9): 3008-3015. |
[5] | 高富豪, 王露, 刘数华. 超硫酸盐水泥净浆的酸性侵蚀劣化机制[J]. 硅酸盐通报, 2022, 41(8): 2618-2627. |
[6] | 贾飞, 阎王虎, 潘慧敏, 汤建华, 王选明, 高昆. 初始损伤对喷射混凝土抗硫酸盐侵蚀性能的影响[J]. 硅酸盐通报, 2022, 41(7): 2258-2267. |
[7] | 方虎, 陈佩圆, 张立恒. 纳米SiO2对氧化镁激发矿渣材料性能的影响试验研究[J]. 硅酸盐通报, 2022, 41(7): 2393-2399. |
[8] | 李贝贝, 陈衡, 侯鹏坤, 王晓伟, 程新. 纳米SiO2对超硫酸盐水泥性能影响研究[J]. 硅酸盐通报, 2022, 41(5): 1494-1501. |
[9] | 李豪, 廖宜顺, 邓芳, 马丰, 董兴智. 磷建筑石膏对超硫酸盐水泥水化的影响[J]. 硅酸盐通报, 2022, 41(12): 4353-4360. |
[10] | 陈宇, 季军荣, 周洲, 武双磊, 陈胡星. 超硫酸盐水泥早期强度影响因素及提高途径[J]. 硅酸盐通报, 2021, 40(5): 1413-1419. |
[11] | 王浩, 邓航, 刘数华. 锑尾矿粉基复合胶凝材料的制备及水化特性[J]. 硅酸盐通报, 2021, 40(2): 534-541. |
[12] | 李相国, 许金生, 姜东兵, 吕阳, 何晨昊, 张乘, 傅秋艳. SAP内养护对碱激发矿渣胶凝材料性能的影响[J]. 硅酸盐通报, 2021, 40(10): 3435-3441. |
[13] | 苏泽淳;曾三海;郑正旗;贺行洋;苏英;王迎斌. 超细磷渣粉对水泥性能的影响[J]. 硅酸盐通报, 2020, 39(8): 2536-2541. |
[14] | 王方刚;梁权刚;陆加越;刘建忠;姜骞;赵少鹏. 不同缓凝剂对水泥超长缓凝作用与水化特性的影响[J]. 硅酸盐通报, 2020, 39(7): 2065-2072. |
[15] | 孙正宁;周健;慕儒;张振秋;陈智丰;葛仲熙;刘成健. 新型超硫酸盐水泥水化硬化机理[J]. 硅酸盐通报, 2019, 38(8): 2362-236. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||