硅酸盐通报 ›› 2024, Vol. 43 ›› Issue (11): 3923-3934.
张逸超1, 梁佳彤1, 虞凯凯2, 俞坚2, 李轩3, 刘志成4, 李彤1, 房延凤5
收稿日期:
2024-04-26
修订日期:
2024-05-27
出版日期:
2024-11-15
发布日期:
2024-11-21
通信作者:
房延凤,博士,副教授。E-mail:fangyf@sjzu.edu.cn
作者简介:
张逸超(1988—),男,博士,副教授。主要从事低碳混凝土的研究。E-mail:zhangyichao@sjzu.edu.cn
基金资助:
ZHANG Yichao1, LIANG Jiatong1, YU Kaikai2, YU Jian2, LI Xuan3, LIU Zhicheng4, LI Tong1, FANG Yanfeng5
Received:
2024-04-26
Revised:
2024-05-27
Published:
2024-11-15
Online:
2024-11-21
摘要: 混凝土的抗冻性是混凝土耐久性评价的关键指标,外部环境正负温循环影响和混凝土饱水度变化所引发的冰胀应力和静水应力将会使混凝土结构产生内外裂缝,降低混凝土的强度和刚度,损伤混凝土结构的整体性、稳定性和耐久性,甚至诱发贯穿性裂缝,直至破坏。利用相变材料在相变过程中释放潜热补偿缓解混凝土内部孔隙水冻结,从而达到改善混凝土抗冻性的目的,对延长混凝土结构的服役寿命有重要意义。本文总结分析了国内外利用相变材料改善混凝土抗冻性的研究进展,提出了目前研究中亟待解决的问题与相变混凝土未来研究的发展方向。
中图分类号:
张逸超, 梁佳彤, 虞凯凯, 俞坚, 李轩, 刘志成, 李彤, 房延凤. 相变混凝土抗冻性研究现状及发展方向[J]. 硅酸盐通报, 2024, 43(11): 3923-3934.
ZHANG Yichao, LIANG Jiatong, YU Kaikai, YU Jian, LI Xuan, LIU Zhicheng, LI Tong, FANG Yanfeng. Research Status and Development Trend of Frost Resistance of Phase Change Concrete[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(11): 3923-3934.
[1] 苏怀智, 谢 威. 寒区水工混凝土冻融损伤及其防控研究进展[J]. 硅酸盐通报, 2021, 40(4): 1053-1071. SU H Z, XIE W. Review on frost damages of hydraulic concrete in cold region and its preventive control[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(4): 1053-1071 (in Chinese). [2] 黄 焱, 史庆增, 宋 安. 冰的温度膨胀力研究[J]. 中国造船, 2003, 44: 423-428. HUANG Y, SHI Q Z, SONG A. The study on the effect of thermal expandingforce of ice on structures[J]. Shipbuilding of China, 2003, 44: 423-428 (in Chinese). [3] 肖栋天, 石发恩. 相变储能技术在功能性混凝土中的应用[J]. 混凝土, 2016(9): 45-51. XIAO D T, SHI F E. Application of phase change energy storage technology in functional concrete materials[J]. Concrete, 2016(9): 45-51 (in Chinese). [4] 向君正, 宋 慧, 冷梦辉, 等. 透水混凝土冻融剥蚀成因分析[J]. 硅酸盐通报, 2021, 40(7): 2215-2224. XIANG J Z, SONG H, LENG M H, et al. Cause analysis of freeze-thaw erosion of pervious concrete[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(7): 2215-2224 (in Chinese). [5] 王占盛, 戎虎仁, 杨淑梅, 等. 高原寒冷地区水泥混凝土道面破坏形式及影响因素研究[J]. 电力学报, 2023, 38(5): 427-433. WANG Z S, RONG H R, YANG S M, et al. Research on the failure forms and influencing factors of cement concrete pavement in cold plateau areas[J]. Journal of Electric Power, 2023, 38(5): 427-433 (in Chinese). [6] 陈 昕, 李文婷, 蒋正武. 相变材料在改善水泥基材料抗冻性方面的研究进展[J]. 硅酸盐通报, 2017, 36(10): 3330-3335. CHEN X, LI W T, JIANG Z W. Utilization of phase change materials to improve the frost resistance of cement based materials[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(10): 3330-3335 (in Chinese). [7] 董昊良, 李化建, 杨志强, 等. 混凝土冻融破坏机理及寿命预测方法[J]. 材料导报, 2024, 38(2): 143-153. DONG H L, LI H J, YANG Z Q, et al. Freeze-thaw failure mechanisms and service life prediction methods of concrete[J]. Materials Reports, 2024, 38(2): 143-153 (in Chinese). [8] POWERS T C. The mechanisms of frost action in concrete(Durability of Concrete, SP-8)[R]. Detroit: ACI, 1965: 42-47. [9] POWERS T, HELMUTH R. Theory of volume changes in hardened port land-cement paste during freezing[C]. Highway Research Board, 1953, 32: 285-297. [10] KESSLER S, THIEL C, GROSSE C U, et al. Effect of freeze-thaw damage on chloride ingress into concrete[J]. Materials and Structures, 2017, 50: 121-134. [11] 米永刚, 刘云贺. 高寒地区高性能混凝土配合比设计与耐久性研究[J]. 混凝土, 2020(7): 92-95. MI Y G, LIU Y H. Research on mix design and durability of high performance concrete in alpine region[J]. Concrete, 2020(7): 92-95 (in Chinese). [12] 赵国堂. 季冻区高速铁路无砟轨道平稳性控制理论与技术[M]. 上海: 上海科学技术出版社, 2021. ZHAO G T. Theory and technology of stability control for ballastless track of high speed railway in seasonal freezing zone[M]. Shanghai: Shanghai Science and Technology Press, 2021 (in Chinese). [13] 叶阳升. 季节性冻土地区高速铁路路基冻胀规律及控制[C]//中国土木工程学会第十二届全国土力学及岩土工程学术大会论文摘要集. 上海, 2015: 233-234. YE Y S. Frost heave law and control of high-speed railway subgrade in seasonal permafrost areas[C]//Proceedings of the 12th Academic Conference on Soil Mechanics and Geotechnical Engineering of the Chinese Civil Engineering Society. Shanghai, 2015: 233-234 (in Chinese). [14] 郭彦荣, 杨有海, 曾龙广. 兰新铁路路基土冻胀特性试验研究[J]. 路基工程, 2010(2): 149-151. GUO Y R, YANG Y H, ZENG L G. Study on frost heaving characteristics of subgrade soil of lanzhou-Xinjiang railway[J]. Subgrade Engineering, 2010(2): 149-151 (in Chinese). [15] 刘国玉. 达坂山公路隧道冻土工程问题和工程防治措施[J]. 冰川冻土, 2006, 28(6): 833-837. LIU G Y. The frozen soil problems and related prevention countermeasures of dabanshan highway tunnel[J]. Journal of Glaciology and Geocryology, 2006, 28(6): 833-837 (in Chinese). [16] 杨春枝. 严寒地区CRTSⅠ型板式无砟轨道底座板混凝土粉化的影响[J]. 铁道建筑, 2017, 57(1): 114-120. YANG C Z. Influence of baseplate concrete pulverization of CRTS I slab ballastless track in severe cold area[J]. Railway Engineering, 2017, 57(1): 114-120 (in Chinese). [17] 杨怀志, 刘学文, 杨志强. 无砟轨道支承层混凝土损伤机理分析[J]. 铁道建筑, 2021, 61(8): 119-122. YANG H Z, LIU X W, YANG Z Q. Analysis of concrete damage mechanism of ballastless track bearing layer[J]. Railway Engineering, 2021, 61(8): 119-122 (in Chinese). [18] 邓祥辉, 张 鹏, 王 睿, 等. 青藏高原地区纤维混凝土抗冻耐久性试验与损伤模型研究[J]. 硅酸盐通报, 2023, 42(9): 3143-3153. DENG X H, ZHANG P, WANG R, et al. Frost resistance durability and damage model of fiber concrete in Tibet Plateau area[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(9): 3143-3153 (in Chinese). [19] 万建国. 我国寒区山岭交通隧道防冻技术综述与研究展望[J]. 隧道建设(中英文), 2021, 41(7): 1115-1131. WAN J G. Review on and present situation and prospect of antifreezing technologies for tunnels in cold areas in China[J]. Tunnel Construction, 2021, 41(7): 1115-1131 (in Chinese). [20] 张文龙. 南水北调中线干线工程京石段水工混凝土防冻胀破坏研究[J]. 水利科技与经济, 2023, 29(8): 152-157. ZHANG W L. Study on frost heaving failure of hydraulic concrete in Beijing-Shijiazhuang section of the middle route of South-to-North Water Transfer Project[J]. Water Conservancy Science and Technology and Economy, 2023, 29(8): 152-157 (in Chinese). [21] 王晓东. 混凝土路面低温破坏机理研究[J]. 水利技术监督, 2022, 30(7): 149-151. WANG X D. Study on low temperature failure mechanism of cement concrete pavement[J]. Technical Supervision in Water Resources, 2022, 30(7): 149-151 (in Chinese). [22] 谢 剑, 唐 静, 孙雅丹. 超低温条件下引气剂对混凝土抗冻性能影响的试验研究[J]. 硅酸盐通报, 2020, 39(1): 12-19. XIE J, TANG J, SUN Y D. Experimental study on the influence of air-entraining agent on the frost resistance of concrete at ultra-low temperatures[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(1): 12-19 (in Chinese). [23] 邢 军, 周 梅, 张 倩. 热活化煤矸石矿物掺合料对混凝土抗渗和抗冻性能影响[J]. 硅酸盐通报, 2015, 34(9): 2696-2701. XING J, ZHOU M, ZHANG Q. Effect of thermal activated coal gangue mineral admixtures on impermeability and frost resistance of concrete[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(9): 2696-2701 (in Chinese). [24] 赵思勰, 晏 华, 李云涛, 等. 相变混凝土的研究及发展趋势[J]. 硅酸盐通报, 2017, 36(4): 1223-1227. ZHAO S X, YAN H, LI Y T, et al. Research and development trend of phase change concrete[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(4): 1223-1227 (in Chinese). [25] KONG X F, LU S L, LI Y R, et al. Numerical study on the thermal performance of building wall and roof incorporating phase change material panel for passive cooling application[J]. Energy and Buildings, 2014, 81: 404-415. [26] NAZIR H, BATOOL M, BOLIVAR OSORIO F J, et al. Recent developments in phase change materials for energy storage applications: a review[J]. International Journal of Heat and Mass Transfer, 2019, 129: 491-523. [27] KUZNIK F, VIRGONE J. Experimental assessment of a phase change material for wall building use[J]. Applied Energy, 2009, 86(10): 2038-2046. [28] 刘 云, 孔祥飞, 戎 贤, 等. 被动式围护结构相变板材的制备及性能研究[J]. 新型建筑材料, 2018, 45(4): 27-30+34. LIU Y, KONG X F, RONG X, et al. Preparation and performance study about phase change plate of passive enclosure structure[J]. New Building Materials, 2018, 45(4): 27-30+34 (in Chinese). [29] 甄会超. 温拌相变沥青混凝土路用性能研究[J]. 交通世界, 2023(14): 23-25. ZHEN H C. Study on road performance of warm mix phase change asphalt concrete[J]. TranspoWorld, 2023(14): 23-25 (in Chinese). [30] MA B, CHEN S S, REN Y Z, et al. The thermoregulation effect of microencapsulated phase-change materials in an asphalt mixture[J]. Construction and Building Materials, 2020, 231: 117186. [31] 张 瑜. 相变自调温材料在沥青路面中的应用[J]. 中国建材科技, 2021, 30(4): 155-157. ZHANG Y. Application of phase change self temperature-regulating materials in asphalt pavement[J]. China Building Materials Science & Technology, 2021, 30(4): 155-157 (in Chinese). [32] 李 新. 相变调温材料对沥青及沥青混合料高温性能及控温性能的影响探究[J]. 化工新型材料, 2019, 47(5): 253-256+263. LI X. Investigation on effect of PCMs on the temperature control of asphalt and its mixture[J]. New Chemical Materials, 2019, 47(5): 253-256+263 (in Chinese). [33] 周雪艳, 马 骉, 任宇铮, 等. 沥青路面用复合定形相变材料调温效果研究[J]. 硅酸盐通报, 2018, 37(11): 3611-3616. ZHOU X Y, MA B, REN Y Z, et al. Study on temperature control performance of composite shaped phase change material for asphalt pavement[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(11): 3611-3616 (in Chinese). [34] 马昆林, 王中志, 龙广成, 等. 动荷载-水-冻融共同作用下混凝土宏观裂缝扩展与演变的研究进展[J]. 材料导报, 2021, 35(19): 19091-19098. MA K L, WANG Z Z, LONG G C, et al. Propagation and evolution of macroscopic crack of concrete under dynamic load-water-freeze-thaw action: a review[J]. Materials Reports, 2021, 35(19): 19091-19098 (in Chinese). [35] 周大卫, 刘娟红, 段品佳, 等. 混凝土超低温冻融循环损伤演化规律和机理[J]. 建筑材料学报, 2022, 25(5): 490-497. ZHOU D W, LIU J H, DUAN P J, et al. Damage evolution law and mechanism of concrete under cryogenic freeze-thaw cycles[J]. Journal of Building Materials, 2022, 25(5): 490-497 (in Chinese). [36] 周建庭, 聂志新, 郭增伟, 等. 相变混凝土的制备与性能研究综述[J]. 江苏大学学报(自然科学版), 2020, 41(5): 588-595. ZHOU J T, NIE Z X, GUO Z W, et al. Review on preparation and properties of phase change concrete[J]. Journal of Jiangsu University (Natural Science Edition), 2020, 41(5): 588-595 (in Chinese). [37] 成鑫磊, 穆 锐, 孙 涛, 等. 固液相变材料的封装制备及在建筑领域的研究进展[J]. 材料导报, 2024, 38(5): 73-87. CHENG X L, MU R, SUN T, et al. Incorporation technique and preparation process of solid-liquid phase change material and its research progress in construction field[J]. Materials Reports, 2024, 38(5): 73-87 (in Chinese). [38] REGIN A F, SOLANKI S C, SAINI J S. Heat transfer characteristics of thermal energy storage system using PCM capsules: a review[J]. Renewable and Sustainable Energy Reviews, 2008, 12(9): 2438-2458. [39] ZHANG H L, BAEYENS J, CÁCERES G, et al. Thermal energy storage: recent developments and practical aspects[J]. Progress in Energy and Combustion Science, 2016, 53: 1-40. [40] 刘晓龙, 柯国炬, 田 波. 相变材料在大体积混凝土中应用的研究现状[J]. 新型建筑材料, 2015, 42(5): 81-85. LIU X L, KE G J, TIAN B. Recent research of the application of phase change materials in mass concrete[J]. New Building Materials, 2015, 42(5): 81-85 (in Chinese). [41] CABEZA L F, CASTELL A, BARRENECHE C, et al. Materials used as PCM in thermal energy storage in buildings: a review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(3): 1675-1695. [42] SOARES N, COSTA J J, GASPAR A R, et al. Review of passive PCM latent heat thermal energy storage systems towards buildings' energy efficiency[J]. Energy and Buildings, 2013, 59: 82-103. [43] KIM Y R, KHIL B S, JANG S J, et al. Effect of barium-based phase change material (PCM) to control the heat of hydration on the mechanical properties of mass concrete[J]. Thermochimica Acta, 2015, 613: 100-107. [44] FERNANDES F, MANARI S, AGUAYO M, et al. On the feasibility of using phase change materials (PCMs) to mitigate thermal cracking in cementitious materials[J]. Cement and Concrete Composites, 2014, 51: 14-26. [45] QIAN C X, GAO G B. Reduction of interior temperature of mass concrete using suspension of phase change materials as cooling fluid[J]. Construction and Building Materials, 2012, 26(1): 527-531. [46] KIM G, LEE E, KIM Y, et al. Hydration heat and autogenous shrinkage of high-strength mass concrete containing phase change material[J]. Journal of Asian Architecture and Building Engineering, 2010, 9(2): 455-462. [47] MEMON S A, CUI H Z, ZHANG H, et al. Utilization of macro encapsulated phase change materials for the development of thermal energy storage and structural lightweight aggregate concrete[J]. Applied Energy, 2015, 139: 43-55. [48] ZHANG D, LI Z J, ZHOU J M, et al. Development of thermal energy storage concrete[J]. Cement and Concrete Research, 2004, 34(6): 927-934. [49] NAYAK S, KRISHNAN N M A, DAS S. Microstructure-guided numerical simulation to evaluate the influence of phase change materials (PCMs) on the freeze-thaw response of concrete pavements[J]. Construction and Building Materials, 2019, 201: 246-256. [50] YEON J H, KIM K K. Potential applications of phase change materials to mitigate freeze-thaw deteriorations in concrete pavement[J]. Construction and Building Materials, 2018, 177: 202-209. [51] 于本田, 陈延飞, 李双洋, 等. 正十四烷/石墨低温相变水泥基材料的制备及冻融损伤演化[J]. 复合材料学报, 2022, 39(6): 2864-2874. YU B T, CHEN Y F, LI S Y, et al. Preparation and freeze-thaw damage evolution of n-tetradecane/graphite low-temperature phase change cement-based materials[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2864-2874 (in Chinese). [52] 高英力, 胡柏学, 贺 敬, 等. 相变控温水泥混凝土路面板设计及模型试验[J]. 中国公路学报, 2011, 24(2): 12-16+69. GAO Y L, HU B X, HE J, et al. Design and model test of cement concrete pavement slab based on phase change and temperature control[J]. China Journal of Highway and Transport, 2011, 24(2): 12-16+69 (in Chinese). [53] ZHOU X M, KASTIUKAS G, LANTIERI C, et al. Mechanical and thermal performance of macro-encapsulated phase change materials for pavement application[J]. Materials, 2018, 11(8): 1398-1415. [54] BENTZ D P, TURPIN R. Potential applications of phase change materials in concrete technology[J]. Cement and Concrete Composites, 2007, 29(7): 527-532. [55] 文 颖. 相变微胶囊改性砂浆自保温性能及微观热机理研究[D]. 邯郸: 河北工程大学, 2022. WEN Y. Investigation on self-insulation property and microthermal mechanism of phase change microcapsule modified mortar[D]. Handan: Hebei University of Engineering, 2022 (in Chinese). [56] 李兴会, 陈敏智, 周晓燕. 复合定形相变材料的封装及应用研究新进展[J]. 工程科学学报, 2020, 42(11): 1422-1432. LI X H, CHEN M Z, ZHOU X Y. Research progress in encapsulation and application of shape-stabilized composite phase-change materials[J]. Chinese Journal of Engineering, 2020, 42(11): 1422-1432 (in Chinese). [57] 吴登科, 罗 凯, 王 艳, 等. 相变微胶囊的制备及在热储能中的应用进展[J/OL]. 化工新型材料, 2024: 1-11 (2024-04-01) [2024-04-15]. https://doi.org/10.19817/j.cnki.issn1006-3536.2024.08.009. WU D K, LUO K, WANG Y, et al. Progress in the preparation of phase change microcapsules and its application in thermal energy storage[J/OL]. New Chemical Materials, 2024: 1-11 (2024-04-01) [2024-04-15]. https://doi.org/10.19817/j.cnki.issn1006-3536.2024.08.009 (in Chinese). [58] 史 琛, 王 平, 杨 柳. 建筑用石蜡类相变储能材料的改性研究进展[J]. 中国材料进展, 2022, 41(8): 607-616. SHI C, WANG P, YANG L. Research progress on modification of paraffin-based phase change energy storage materials for construction[J]. Materials China, 2022, 41(8): 607-616 (in Chinese). [59] SHE Z Y, WEI Z H, YOUNG B A, et al. Examining the effects of microencapsulated phase change materials on early-age temperature evolutions in realistic pavement geometries[J]. Cement and Concrete Composites, 2019, 103: 149-159. [60] LI W T, LING C W, JIANG Z W, et al. Evaluation of the potential use of form-stable phase change materials to improve the freeze-thaw resistance of concrete[J]. Construction and Building Materials, 2019, 203: 621-632. [61] LIU F, TANG R, MA W W, et al. Frost resistance and meso-deterioration analysis of microcapsulated phase change materials modified concrete[J]. Journal of Building Engineering, 2022, 61: 105214. [62] TIAN Y, LAI Y M, QIN Z P, et al. Numerical investigation on the thermal control performance and freeze-thaw resistance of a composite concrete pier with microencapsulated phase change materials[J]. Solar Energy, 2022, 231: 970-984. [63] 徐虎林. 一种自调温公路相变材料及生产方法: CN101029216A[P]. 2007-09-05. XU H L. A self regulating phase change material for highways and its production method: CN101029216A[P]. 2007-09-05 (in Chinese). [64] 杜春志, 刘兵飞, 何翔宇. 相变控温混凝土机场道面强度与温度场数值分析[J]. 混凝土与水泥制品, 2015(8): 12-15. DU C Z, LIU B F, HE X Y. Nunierial analysis on strength of airport pavement concrete for phase change temperature control and temperature field[J]. China Concrete and Cement Products, 2015(8): 12-15 (in Chinese). [65] 张 宇, 恽定康, 邱 菊. 冻融循环下相变混凝土剪力墙抗震性能研究[J]. 徐州工程学院学报(自然科学版), 2023, 38(1): 42-49. ZHANG Y, YUN D K, QIU J. Seismic performance of phase change concrete shear wall under freeze-thaw cycle[J]. Journal of Xuzhou Institute of Technology (Natural Sciences Edition), 2023, 38(1): 42-49 (in Chinese). [66] 马 骉, 王晓曼, 李 超, 等. 相变材料在沥青混凝土路面中的应用前景分析[J]. 公路, 2009, 54(12): 115-118. MA B, WANG X M, LI C, et al. Analysis of application prospect of phase change materials in asphalt concrete pavement[J]. Highway, 2009, 54(12): 115-118 (in Chinese). [67] 霍曼琳, 马保国, 魏建强, 等. 相变储能路面发热融雪材料体系的试验研究[J]. 武汉理工大学学报(交通科学与工程版), 2010, 34(6): 1177-1181. HUO M L, MA B G, WEI J Q, et al. Study of the surface snow heating system using phase change materials energy storage[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2010, 34(6): 1177-1181 (in Chinese). [68] 杨献章, 胡柏学, 廖春芳, 等. 相变控温技术在桥梁防冻工程的应用[J]. 公路工程, 2013, 38(1): 1-4+27. YANG X Z, HU B X, LIAO C F, et al. Application of phase-change temperature control technique in bridge antifreeze engineering[J]. Highway Engineering, 2013, 38(1): 1-4+27 (in Chinese). [69] NAYAK S, LYNGDOH G A, DAS S. Influence of microencapsulated phase change materials (PCMs) on the chloride ion diffusivity of concretes exposed to Freeze-thaw cycles: insights from multiscale numerical simulations[J]. Construction and Building Materials, 2019, 212: 317-328. [70] YUAN X S, WANG B M, CHEN P, et al. Study on the frost resistance of concrete modified with steel balls containing phase change material (PCM)[J]. Materials, 2021, 14(16): 4497. [71] LI H W X, LYNGDOH G, KRISHNAN N M A, et al. Machine learning guided design of microencapsulated phase change materials-incorporated concretes for enhanced freeze-thaw durability[J]. Cement and Concrete Composites, 2023, 140: 105090. [72] 中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of long-term performance and durability of ordinary concrete: GB/T 50082—2009[S]. Beijing: China Architecture & Building Press, 2009 (in Chinese). [73] 黄 亮, 高英力, 刘 赫. 相变控温复合防冻桥面结构的力学稳定性分析[J]. 硅酸盐通报, 2015, 34(5): 1258-1263. HUANG L, GAO Y L, LIU H. Analysis of mechanics stability of phase change and temperature control composite anti-freezing bridge deck structure[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(5): 1258-1263 (in Chinese). [74] 周燏城. 水工钢球相变混凝土抗冻融性能试验研究[J]. 水利科技与经济, 2022, 28(8): 123-125+141. ZHOU Y C. Experimental study on freeze-thaw resistance of hydraulic steel ball phase change concrete[J]. Water Conservancy Science and Technology and Economy, 2022, 28(8): 123-125+141 (in Chinese). [75] MOHSENI E, TANG W, KHAYAT K H, et al. Thermal performance and corrosion resistance of structural-functional concrete made with inorganic PCM[J]. Construction and Building Materials, 2020, 249: 118768. [76] PILEHVAR S, SZCZOTOK A M, RODRÍGUEZ J F, et al. Effect of freeze-thaw cycles on the mechanical behavior of geopolymer concrete and Portland cement concrete containing micro-encapsulated phase change materials[J]. Construction and Building Materials, 2019, 200: 94-103. [77] LANZÓN M, CNUDDE V, DE KOCK T, et al. Microstructural examination and potential application of rendering mortars made of tire rubber and expanded polystyrene wastes[J]. Construction and Building Materials, 2015, 94: 817-825. [78] GONZÁLEZ M A, IRASSAR E F. Ettringite formation in low C3A Portland cement exposed to sodium sulfate solution[J]. Cement and Concrete Research, 1997, 27(7): 1061-1071. [79] ODLER I, COLÁN-SUBAUSTE J. Investigations on cement expansion associated with ettringite formation[J]. Cement and Concrete Research, 1999, 29(5): 731-735. [80] 桑国臣, 曹艳洲, 樊 敏, 等. 硫铝酸盐水泥基复合相变储能砂浆的制备及其性能[J]. 复合材料学报, 2018, 35(8): 2124-2131. SANG G C, CAO Y Z, FAN M, et al. Preparation and properties of sulphoaluminate cement-based composite phase change storage mortar[J]. Acta Materiae Compositae Sinica, 2018, 35(8): 2124-2131 (in Chinese). [81] 朱洪洲, 陈瑞璞, 苟 珊, 等. 相变水泥混凝土的力学性能与低温调温性能[J]. 硅酸盐通报, 2020, 39(11): 3510-3514. ZHU H Z, CHEN R P, GOU S, et al. Mechanical properties and low temperature adjustment properties of phase change cement concrete[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(11): 3510-3514 (in Chinese). [82] 武泽福, 马芹永. 相变储能混凝土的动态冲击压缩试验与分析[J]. 科学技术与工程, 2017, 17(30): 302-306. WU Z F, MA Q Y. The dynamic compressive test and analysis of phase-changing energy-storing concrete[J]. Science Technology and Engineering, 2017, 17(30): 302-306 (in Chinese). [83] 白 梅, 马芹永. 相变储能骨料和硅粉掺量对混凝土抗压强度影响的试验与分析[J]. 科学技术与工程, 2017, 17(13): 266-269. BAI M, MA Q Y. Experiment and analysis on compressive strength of concrete with different contents of phase-changing energy-storing aggregate and silica fume[J]. Science Technology and Engineering, 2017, 17(13): 266-269 (in Chinese). [84] 张 浩, 杨 刚, 龙红明. 改性钢渣基相变微粉的制备与性能[J]. 过程工程学报, 2017, 17(6): 1304-1309. ZHANG H, YANG G, LONG H M. Preparation and performance of modified steel slag-based phase change powders[J]. The Chinese Journal of Process Engineering, 2017, 17(6): 1304-1309 (in Chinese). [85] PILEHVAR S, CAO V D, SZCZOTOK A M, et al. Physical and mechanical properties of fly ash and slag geopolymer concrete containing different types of micro-encapsulated phase change materials[J]. Construction and Building Materials, 2018, 173: 28-39.[86] 龙广成, 毕丽苹, 马 聪, 等. 一种高抗水吸附性能的蒸养水泥基材料及其制备方法: CN111499295B[P]. 2021-04-16. LONG G C, BI L P, MA C, et al. A steam cured cement-based material with high water adsorption resistance and its preparation method: CN111499295B[P]. 2021-04-16 (in Chinese). [87] HAIDER M Z, JIN X H, SHARMA R, et al. Enhancing the compressive strength of thermal energy storage concrete containing a low-temperature phase change material using silica fume and multiwalled carbon nanotubes[J]. Construction and Building Materials, 2022, 314: 125659. [88] 邓敏达. 纳米二氧化硅-钢纤维增强MPCM混凝土的制备及性能研究[D]. 湘潭: 湘潭大学, 2022. DENG M D. Preparation and properties of nano-silica-steel fiber reinforced MPCM concrete[D]. Xiangtan: Xiangtan University, 2022 (in Chinese). [89] 兰官奇, 晁思思, 王毅红, 等. 一种纤维增强型相变储能混凝土及其制备方法: CN115057675A[P]. 2022-09-16. LAN G Q, CHAO S S, WANG Y H, et al. A fiber-reinforced phase change energy storage concrete and its preparation method: CN115057675A[P]. 2022-09-16 (in Chinese). [90] 李 进, 陈佩圆, 蔡海兵, 等. 一种采用乙基纤维素涂层封装的相变微胶囊及其制备方法: CN114921231A[P]. 2022-08-19. LI J, CHEN P Y, CAI H B, et al. A phase change microcapsule encapsulated with ethyl cellulose coating and its preparation method: CN114921231A[P]. 2022-08-19 (in Chinese). |
[1] | 孙增宝, 柳馨, 铁生年. KGM/CNC碳气凝胶定型共晶盐芒硝复合相变材料的制备及热性能研究[J]. 硅酸盐通报, 2024, 43(8): 3071-3078. |
[2] | 梁秋群, 陈宣东, 胡祥. 冻融循环下混凝土中氯离子传输机制细观模拟[J]. 硅酸盐通报, 2024, 43(6): 2102-2110. |
[3] | 吴浩, 薛维培, 王中建. 盐侵冻融循环下聚乙烯醇纤维混凝土孔结构分形特征[J]. 硅酸盐通报, 2024, 43(5): 1859-1866. |
[4] | 刘涛, 吕军, 邓旭艳, 王绍明, 于本田. 玄武岩纤维-橡胶混凝土性能研究[J]. 硅酸盐通报, 2024, 43(5): 1906-1916. |
[5] | 刘佳敏, 马玉薇, 李刚. 粉煤灰对渠道用混凝土抗冻及抗冲磨性能的影响[J]. 硅酸盐通报, 2024, 43(4): 1436-1444. |
[6] | 郭强, 张晓雷, 史晨曦, 门杰. 赤泥-矿渣基地聚物固化黄土冻融后力学特性研究[J]. 硅酸盐通报, 2024, 43(4): 1482-1489. |
[7] | 徐存东, 李博飞, 李准, 王海若, 曹骏, 徐慧. 早期受盐-冻耦合作用下掺玄武岩纤维混凝土耐久性劣化规律[J]. 硅酸盐通报, 2024, 43(3): 816-824. |
[8] | 成旭, 朱平华, 王新杰, 刘惠, 王华宇, 王月盈, 陈垂睿. 矿物掺合料对再生混凝土抗冻性与可再生性的影响[J]. 硅酸盐通报, 2024, 43(3): 956-964. |
[9] | 楚留声, 张鹏, 赫约西, 元成方, 程站起. 盐冻耦合环境下再生砖粉ECC的耐久性研究[J]. 硅酸盐通报, 2024, 43(3): 1012-1020. |
[10] | 陆春华, 朱学武, 平安, 杨钰婷. 含引气剂海工混凝土的抗冻性能及其梁受弯承载力[J]. 硅酸盐通报, 2024, 43(2): 418-427. |
[11] | 唐子祥, 杨淑雁, 高海海, 徐宁阳. 硫酸盐侵蚀和干湿、冻融循环下混凝土单轴受压损伤对比[J]. 硅酸盐通报, 2024, 43(2): 428-438. |
[12] | 胥晔, 陶俊林, 李洪祥. 冻融循环后混凝土冲击劈拉强度预测模型[J]. 硅酸盐通报, 2024, 43(2): 448-455. |
[13] | 单社, 郭海贞, 魏定邦, 刘辉, 阮志琦, 任国斌. 水泥稳定再生骨料混合料力学性能和抗冻性能研究[J]. 硅酸盐通报, 2024, 43(2): 774-780. |
[14] | 方莹, 文祝. 多尺度碳纤维改性混凝土的力学性能及抗冻性[J]. 硅酸盐通报, 2024, 43(11): 4004-4011. |
[15] | 彭勇军, 刘娟红, 李华, 李康. 基于RSM-BBD的高原地区桥墩混凝土性能试验研究[J]. 硅酸盐通报, 2023, 42(7): 2401-2408. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||