硅酸盐通报 ›› 2024, Vol. 43 ›› Issue (11): 3895-3910.
• 水泥混凝土 • 下一篇
高明爽1,2, 潘慧敏1,2, 赵庆新1,2
收稿日期:
2024-04-03
修订日期:
2024-05-21
出版日期:
2024-11-15
发布日期:
2024-11-21
通信作者:
潘慧敏,博士,教授。E-mail:hmpan2005@163.com
作者简介:
高明爽(1999—),女,硕士研究生。主要从事喷射混凝土材料的研究。E-mail:gms13191833126@163.com
基金资助:
GAO Mingshuang1,2, PAN Huimin1,2, ZHAO Qingxin1,2
Received:
2024-04-03
Revised:
2024-05-21
Published:
2024-11-15
Online:
2024-11-21
摘要: 喷射混凝土是一种广泛应用于建筑和土木工程领域的材料,孔结构对喷射混凝土的宏观性能与耐久性有着重要影响。本文对孔结构模型进行了总结,阐述和比较了孔结构的测试方法,系统分析了养护温度、外加剂、水胶比、矿物掺合料、泵送压力和时间等因素对喷射混凝土孔结构的影响,深入探讨了孔结构对喷射混凝土抗冻性能、抗渗性能、抗碳化性能及抗化学侵蚀性能的影响,并对喷射混凝土孔结构未来的研究方向提出了展望。
中图分类号:
高明爽, 潘慧敏, 赵庆新. 喷射混凝土孔结构及其对耐久性影响的研究进展[J]. 硅酸盐通报, 2024, 43(11): 3895-3910.
GAO Mingshuang, PAN Huimin, ZHAO Qingxin. Research Progress on Pore Structure of Shotcrete and Its Influence on Durability[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(11): 3895-3910.
[1] THOMAS A. Sprayed concrete lined tunnel[M]. New York: Taylor & Francis, 2012: 9. [2] HEMPHILL G B. Practical tunnel construction[M]. Hoboken: John Wiley & Sons, 2013: 309-322. [3] JIN X G, HE J, HOU C, et al. The mechanical properties of early aged shotcrete under internal sulfate attack[J]. Materials, 2021, 14(13): 3726. [4] XIAO J Z, LV Z Y, DUAN Z H, et al. Pore structure characteristics, modulation and its effect on concrete properties: a review[J]. Construction and Building Materials, 2023, 397: 132430. [5] 薛邵龙. 高引气喷射混凝土制备与性能研究[D]. 西安: 长安大学, 2014. XUE S L. Preparation and application of shotconcrete with high air content[D]. Xi'an: Chang'an University, 2014 (in Chinese). [6] 张绫纳. 隧道喷射混凝土渗透性能及其盲管水量分析研究[D]. 重庆: 重庆交通大学, 2019. ZHANG L N. Study on permeability of tunnel shotcrete and its blind pipe water volume[D]. Chongqing: Chongqing Jiaotong University, 2019 (in Chinese). [7] CHEN W, LI K L, WU M M, et al. Influence of pore structure characteristics on the gas permeability of concrete[J]. Journal of Building Engineering, 2023, 79: 107852. [8] POWERS T, BROWNYARD T L. Studies of the physical properties of hardened Portland cement paste[J]. Journalof the American Concrete Institute, 1947, 18(7): 845-880. [9] BRUNAUER S. Tobermorite gel: the heart of concrete[J]. American Scientist, 1962, 50(1): 210-229. [10] 郭剑飞. 混凝土孔结构与强度关系理论研究[D]. 杭州: 浙江大学, 2004. GUO J F. The theoretical research of the pore structure and strength of concrete[D]. Hangzhou: Zhejiang University, 2004 (in Chinese). [11] 吴中伟, 张鸿直. 膨胀混凝土[M]. 北京: 中国铁道出版社, 1990. WU Z W, ZHANG H Z. Expansive concrete [M]. Beijing: China Railway Press, 1990 (in Chinese). [12] 近藤连一, 大门正机. 硬化水泥浆的相组成[M]. 北京: 中国建筑工业出版社, 1982. JINTENG L Y, DAMEN Z J. Phase composition of hardened cement slurry[M]. Beijing: China Construction Industry Press, 1982 (in Chinese). [13] FU H J, WANG X Z, ZHANG L X, et al. Investigation of the factors that control the development of pore structure in lacustrine shale: a case study of block X in the Ordos Basin, China[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 1422-1432. [14] MA H Y. Mercury intrusion porosimetry in concrete technology: tips in measurement, pore structure parameter acquisition and application[J]. Journal of Porous Materials, 2014, 21(2): 207-215. [15] 沈业青, 邓 敏, 莫立武. 孔结构测试技术及其在硬化水泥浆体孔结构表征中的应用[J]. 硅酸盐通报, 2009, 28(6): 1191-1196. SHEN Y Q, DENG M, MO L W. Porosimetry techniques and their applications in pore structure characterization of hardened cement pastes[J]. Bulletin of the Chinese Ceramic Society, 2009, 28(6): 1191-1196 (in Chinese). [16] 秦 雷, 王 平, 林海飞, 等. 基于氮气吸附和压汞法液氮冻结煤体孔隙结构精细化表征研究[J]. 西安科技大学学报, 2020, 40(6): 945-952+959. QIN L, WANG P, LIN H F, et al. Advanced characterization of pore structure of liquid nitrogen frozen coal using nitrogen adsorption and mercury intrusion methods[J]. Journal of Xi'an University of Science and Technology, 2020, 40(6): 945-952+959 (in Chinese). [17] 刘 军, 邢 锋, 董必钦. 氮气吸附法测得的混凝土微观孔结构[J]. 四川建筑科学研究, 2009, 35(4): 183-185. LIU J, XING F, DONG B Q. The method of nitrogen adsorption measured pore structure of concrete[J]. Sichuan Building Science, 2009, 35(4): 183-185 (in Chinese). [18] STORCK S, BRETINGER H, MAIER W F. Characterization of micro- and mesoporous solids by physisorption methods and pore-size analysis[J]. Applied Catalysis A: General, 1998, 174(1/2): 137-146. [19] 陈金妹, 谈 萍, 王建永. 气体吸附法表征多孔材料的比表面积及孔结构[J]. 粉末冶金工业, 2011, 21(2): 45-49. CHEN J M, TAN P, WANG J Y. Characterization of pore structure and specific surface area based on gas adsorption applied for porous materials[J]. Powder Metallurgy Industry, 2011, 21(2): 45-49 (in Chinese). [20] IVAN O, JAN S. Pore structure of hydrated calcium silicates. IV. Analysis of a synthetic tobermorite[J]. Journal of Colloid and Interface Science, 1973, 42(2): 291-297. [21] MITCHELL J, WEBBER J, STRANGE J. Nuclear magnetic resonance cryoporometry[J]. Physics Reports, 2008, 461(1): 1-36. [22] CHEN J H, LI Y L, ZHOU H, et al. Nuclear magnetic resonance study on concrete pore structure evolution under different curing environments[J]. Journal of Management, 2022, 74(5): 1819-1827. [23] JEHNG J Y, SPRAGUE D T, HALPERIN W P. Pore structure of hydrating cement paste by magnetic resonance relaxation analysis and freezing[J]. Magnetic Resonance Imaging, 1996, 14(7/8): 785-791. [24] VALCKENBORG R E, PEL L, KOPINGA K. Combined NMR cryoporometry and relaxometry[J]. Journal of Physics D: Applied Physics, 2002, 35(3): 249-256. [25] CHUNG S Y, LEHMANN C, ABD ELRAHMAN M, et al. Pore characteristics and their effects on the material properties of foamed concrete evaluated using micro-CT images and numerical approaches[J]. Applied Sciences, 2017, 7(6): 550. [26] 李易霖, 张云峰, 丛 琳, 等. X-CT扫描成像技术在致密砂岩微观孔隙结构表征中的应用: 以大安油田扶余油层为例[J]. 吉林大学学报(地球科学版), 2016, 46(2): 379-387. LI Y L, ZHANG Y F, CONG L, et al. Application of X-CT scanning technique in the characterization of micro pore structure of tight sandstone reservoir: an example from Fuyu oil layer in Daan oilfield[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(2): 379-387 (in Chinese). [27] 刘向君, 朱洪林, 梁利喜. 基于微CT技术的砂岩数字岩石物理实验[J]. 地球物理学报, 2014, 57(4): 1133-1140. LIU X J, ZHU H L, LIANG L X. Digital rock physics of sandstone based on micro-CT technology[J]. Chinese Journal of Geophysics, 2014, 57(4): 1133-1140 (in Chinese). [28] WONG R C K, CHAU K T. Estimation of air void and aggregate spatial distributions in concrete under uniaxial compression using computer tomography scanning[J]. Cement and Concrete Research, 2005, 35(8): 1566-1576. [29] 刘京红, 史攀飞, 杨跃飞, 等. 基于CT试验的混凝土裂纹扩展演化研究[J]. 混凝土, 2017(4): 74-77. LIU J H, SHI P F, YANG Y F, et al. Concrete crack evolution research based on CT test[J]. Concrete, 2017(4): 74-77 (in Chinese). [30] LIU P, CUI S, LI Z H, et al. Influence of surrounding rock temperature on mechanical property and pore structure of concrete for shotcrete use in a hot-dry environment of high-temperature geothermal tunnel[J]. Construction and Building Materials, 2019, 207(5): 329-337. [31] FAN L D, ZHANG Z J, YU Y Q, et al. Effect of elevated curing temperature on ceramsite concrete performance[J]. Construction and Building Materials, 2017, 153: 423-429. [32] PICHLER C, SCHMID M, TRAXL R, et al. Influence of curing temperature dependent microstructure on early-age concrete strength development[J]. Cement and Concrete Research, 2017, 102: 48-59. [33] ZHANG Z Q, ZHANG B, YAN P. Hydration and microstructures of concrete containing raw or densified silica fume at different curing temperatures[J]. Construction and Building Materials, 2016, 121: 483-490. [34] 宿 辉, 黄 顺, 屈春来. 高温对喷射混凝土孔隙结构分布特征的影响分析[J]. 科学技术与工程, 2016, 16(10): 225-229. SU H, HUANG S, QU C L. Analysis the distribution characteristics of pore structure in shotcrete affected by high temperature[J]. Science Technology and Engineering, 2016, 16(10): 225-229 (in Chinese). [35] 何廷树. 混凝土外加剂[M]. 西安: 陕西科学技术出版社, 2003. HE T S. Concrete admixtures[M]. Xi'an: Shaanxi Science and Technology Press, 2003 (in Chinese). [36] 杨文萃. 无机盐对混凝土孔结构和抗冻性影响的研究[D]. 哈尔滨: 哈尔滨工业大学, 2009. YANG W C. Effect of inorganic salts on pore structure and frost resistance of concrete[D]. Harbin: Harbin Institute of Technology, 2009 (in Chinese). [37] 黄森宝. 新型无碱速凝剂对混凝土性能及孔结构影响的研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. HUANG S B. Influence of new type non-alkali accelerating admixture on concrete performance and pore structure[D]. Harbin: Harbin Institute of Technology, 2021 (in Chinese). [38] 李文霞, 朱 凯. 高含气量湿喷混凝土制备与性能研究[J]. 混凝土, 2016(8): 114-117. LI W X, ZHU K. Preparation and performance of shotcrete with high air content[J]. Concrete, 2016(8): 114-117 (in Chinese). [39] WANG J B, NIU D T, ZHANG Y L. Mechanical properties, permeability and durability of accelerated shotcrete[J]. Construction and Building Materials, 2015, 95: 312-328. [40] NIU D T, WANG J B, WANG Y. Effect of hydration aging and water binder ratio on microstructure and mechanical properties of sprayed concrete[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2015, 30(4): 745-751. [41] 王家滨, 牛荻涛, 张永利. 喷射混凝土力学性能、渗透性及耐久性试验研究[J]. 土木工程学报, 2016, 49(5): 96-109. WANG J B, NIU D T, ZHANG Y L. Investigation of mechanical, permeability and durability performance of shotcrete with and without steel fiber[J]. China Civil Engineering Journal, 2016, 49(5): 96-109 (in Chinese). [42] WANG J B, NIU D T, DING S, et al. Microstructure, permeability and mechanical properties of accelerated shotcrete at different curing age[J]. Construction and Building Materials, 2015, 78: 203-216. [43] 葛兆明, 余成行, 魏 群, 等. 混凝土外加剂[M]. 北京: 化学工业出版社, 2012. GE Z M, YU C X, WEI Q, et al. Concrete admixtures[M]. Beijing: Chemical Industry Press, 2012 (in Chinese). [44] 丁向群, 周睿彤, 王 钰. 硅灰对混凝土抗冻性能及其孔结构的影响[J]. 混凝土, 2017(2): 53-55. DING X Q, ZHOU R T, WANG Y. Effect of silica fume on the frost resistance and pore structure of concrete[J]. Concrete, 2017(2): 53-55 (in Chinese). [45] WAN Z M, HE T S, CHANG N, et al. Effect of silica fume on shrinkage of cement-based materials mixed with alkali accelerator and alkali-free accelerator[J]. Journal of Materials Research and Technology, 2023, 22: 825-837. [46] 张俊儒, 闻毓民, 欧小强. 粉煤灰喷射混凝土孔隙结构的演变特征[J]. 西南交通大学学报, 2018, 53(2): 296-302. ZHANG J R, WEN Y M, OU X Q. Evolutionary characteristics of pore structure of fly ash shotcrete[J]. Journal of Southwest Jiaotong University, 2018, 53(2): 296-302 (in Chinese). [47] 焦耐淇. 喷射钢纤维混凝土耐久性试验研究[D]. 西安: 西安建筑科技大学, 2012. JIAO N Q. Experiment research into steel fiber shotcrete durability[D]. Xi'an: Xi'an University of Architecture and Technology, 2012 (in Chinese). [48] 丁 莎. 喷射混凝土微观结构与宏观性能研究[D]. 西安: 西安建筑科技大学, 2014. DING S. Research on the relationship between microstructure and macroscopic performance of shotcrete[D]. Xi'an: Xi'an University of Architecture and Technology, 2014 (in Chinese). [49] 王家滨. 喷射混凝土耐久性能劣化规律及机理研究[D]. 西安: 西安建筑科技大学, 2016. WANG J B. Study of deterioration law and mechanism of shotcrete durability performance[D]. Xi'an: Xi'an University of Architecture and Technology, 2016 (in Chinese). [50] 赵铁军. 混凝土渗透性[M]. 北京: 科学出版社, 2006. ZHAO T J. Concrete permeability[M]. Beijing: Science Press, 2006 (in Chinese). [51] 潘 刚, 李春岿, 雅各布·拉日诺夫斯基, 等. 基于CT技术的喷射混凝土粗骨料与孔隙分布规律研究[J]. 山东科技大学学报(自然科学版), 2023, 42(5): 40-47. PAN G, LI C K, JAKUB L, et al. Research on coarse aggregate and pore distribution law of shotcrete based on CT technology[J]. Journal of Shandong University of Science and Technology (Natural Science), 2023, 42(5): 40-47 (in Chinese). [52] 周 云. 骨料中粘土质微细颗粒对混凝土性能的影响及控制方法综述[J]. 硅酸盐通报, 2015, 34(2): 433-437+443. ZHOU Y. Effect and control methods of clay microfine in aggregates on concrete performance[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(2): 433-437+443 (in Chinese). [53] 罗健勇, 于本田, 苏俊辉, 等. 机制砂颗粒级配对混凝土性能的影响研究[J]. 公路, 2022, 67(9): 384-388. LUO J Y, YU B T, SU J H, et al. Study on the influence of particle size distribution of machine-made sand on concrete properties[J]. Highway, 2022, 67(9): 384-388 (in Chinese). [54] 方浩然, 张士萍, 牛龙龙. 细骨料对喷射混凝土的力学性能影响研究[J]. 南京工程学院学报(自然科学版), 2022, 20(4): 48-52. FANG H R, ZHANG S P, NIU L L. A study on the influence of fine aggregate on mechanical properties of shotcrete[J]. Journal of Nanjing Institute of Technology (Natural Science Edition), 2022, 20(4): 48-52 (in Chinese). [55] 内维尔. 混凝土渗透性[M]. 北京: 中国建筑工业出版社, 2011: 216-217. NEI W E. Concrete permeability[M]. Beijing: China Construction Industry Press, 2011: 216-217 (in Chinese). [56] 边文辉. 矿用轻质骨料喷射混凝土的研究[D]. 青岛: 山东科技大学, 2019. BIAN W H. Research on lightweight aggregate shotcrete for mining[D]. Qingdao: Shandong University of Science and Technology, 2019 (in Chinese). [57] BARLUENGA G, GIMÉNEZ M, SEPULCRE A, et al. Effect of full scale pumping at early age and on hardened microstructure and properties of SCC with fly ash in hot-dry curing conditions[J]. Construction and Building Materials, 2018, 191: 1128-1138. [58] LI Y, HAO J, WANG Z G, et al. Influence of ultra-high-rise pumping on microstructure and multi-scale mechanical properties of concrete based on X-ray CT and 3D mesoscopic numerical simulation[J]. Construction and Building Materials, 2021, 267: 120980. [59] HAO J, YU B, LI Y, et al. Effect of high pump pressure on chloride migration in ITZ of concrete[J]. Journal of Building Engineering, 2023, 66: 105926. [60] 马建峰, 涂玉林, 谢昱昊, 等. 800 m超长盘管泵送前后混凝土性能变化及其机理[J]. 建筑材料学报, 2022, 25(12): 1293-1299. MA J F, TU Y L, XIE Y H, et al. Change of concrete performance and its mechanism before and after 800 m super-long coil pumping[J]. Journal of Building Materials, 2022, 25(12): 1293-1299 (in Chinese). [61] FEYS D, DE SCHUTTER G, FATAEI S, et al. Pumping of concrete: understanding a common placement method with lots of challenges[J]. Cement and Concrete Research, 2022, 154: 106720. [62] 陈 超. 无碱速凝剂与水泥适应性的影响因素及机理研究[D]. 上海: 同济大学, 2019. CHEN C. A study on the factors and mechanisms influencing the adaptability of alkali free accelerators to cement[D]. Shanghai: Tongji University, 2019 (in Chinese). [63] 朱蓓蓉, 杨全兵, 黄士元. 除冰盐对混凝土化学侵蚀机理研究[J]. 低温建筑技术, 2000, 22(1): 3-6. ZHU B R, YANG Q B, HUANG S Y. Mechanism of chemical attack of the deicer on concrete[J]. Low Temperature Architecture Technology, 2000, 22(1): 3-6 (in Chinese). [64] 陈树人, 柳梭哲, 王久良. 混凝土孔结构对冰点的影响[J]. 低温建筑技术, 2000, 22(1): 9-17. CHEN S R, LIU S Z, WANG J L. Influence of concrete pore structure on freezing point[J]. Low Temperature Architecture Technology, 2000, 22(1): 9-17 (in Chinese). [65] LAMONTAGNE A, PIGEON M. The influence of polypropylene fibers and aggregate grading on the properties of dry-mix shotcrete[J]. Cement and Concrete Research, 1995, 25(2): 293-298. [66] JOLIN M, BEAUPRÉ D, PIGEON M, et al. Use of set accelerating admixtures in dry-mix shotcrete[J]. Journal of Materials in Civil Engineering, 1997, 9(4): 180-184. [67] 陈建勋. 寒区隧道喷射混凝土冻融损伤机理及抗冻性的研究[D]. 西安: 长安大学, 2013. CHEN J X. Research on freeze-thaw damage mechanism and frost resistance of sprayed concrete in cold region tunnels[D]. Xi'an: Chang'an University, 2013 (in Chinese). [68] 程良奎, 李象范. 岩土锚固·土钉·喷射混凝土: 原理、设计与应用[M]. 北京: 中国建筑工业出版社, 2008: 595-641. CHENG L K, LI X F. Geotechnical, anchorage, soil nail shotcrete-principles, design, and application[M]. Beijing: China Construction Industry Press, 2008: 595-641 (in Chinese). [69] HU Z, DING H, LAI J X, et al. The durability of shotcrete in cold region tunnel: a review[J]. Construction and Building Materials, 2018, 185: 670-683. [70] 蒿 洋, 牛荻涛, 王家滨. 硝酸侵蚀环境喷射混凝土抗冻性试验研究[J]. 混凝土, 2017(12): 154-156. HAO Y, NIU D T, WANG J B. Experimental study on frost resistance of sprayed concrete under coupled nitric acid erosion and freeze-thaw cycles[J]. Concrete, 2017(12): 154-156 (in Chinese). [71] 王家滨, 牛荻涛, 袁 斌. 冻融损伤喷射混凝土本构关系及微观结构[J]. 土木建筑与环境工程, 2016, 38(1): 30-39. WANG J B, NIU D T, YUAN B. Constitutive relation and microstructure on shotcrete after freeze and thaw damage[J]. Journal of Civil, Architectural & Environmental Engineering, 2016, 38(1): 30-39 (in Chinese). [72] WANG J B, NIU D T. Influence of freeze-thaw cycles and sulfate corrosion resistance on shotcrete with and without steel fiber[J]. Construction and Building Materials, 2016, 122: 628-636. [73] 赵喜忠. 隧道喷射混凝土抗冻耐久性试验研究[D]. 西安: 长安大学, 2011. ZHAO X Z. Experimental study on tunnels sprayed concrete frost-resistance and durability[D]. Xi'an: Chang'an University, 2011 (in Chinese). [74] 关宝树. 隧道及地下工程喷混凝土支护技术[M]. 北京: 人民交通出版社, 2009. GUAN B S. Tunnel and underground engineering shotcrete support technology[M]. Beijing: China Communication Press, 2009 (in Chinese). [75] 曾鲁平, 赵 爽, 王 伟, 等. 硬化喷射混凝土的气泡结构特性、抗水渗透及抗冻性能[J]. 硅酸盐学报, 2020, 48(11): 1781-1790. ZENG L P, ZHAO S, WANG W, et al. Air-void structure characteristics, water penetration resistance and freeze-thaw resistance of hardened shotcrete[J]. Journal of the Chinese Ceramic Society, 2020, 48(11): 1781-1790 (in Chinese). [76] 李志勇, 姚佳良, 张 宇. 关于混凝土抗渗性试验方法的研究[J]. 混凝土, 2006(2): 57-60+69. LI Z Y, YAO J L, ZHANG Y. Testing methods on concrete permeability[J]. Concrete, 2006(2): 57-60+69 (in Chinese). [77] TAN K F, GJøRV O E. The accelerated test of chloride permeability of concrete[J]. Journal of Wuhan University of Technology Materials Science Edition, 2003, 18(2): 57-60. [78] ABBAA A, CARCASSES M, YSSORCHE-CUBAYNES M P. Permeability of mortars and the degree of saturation[J]. 1er Recontre Internationale de Toulouse, 1998. [79] MEHTA P K. Hardened cement paste: Microstructure and its relationship to properties[C]//Proceeding of 8th International Congress of the Chemistry of Cement. 1986: 113-121. [80] 李淑进, 赵铁军, 吴科如. 混凝土渗透性与微观结构关系的研究[J]. 混凝土与水泥制品, 2004(2): 6-8. LI S J, ZHAO T J, WU K R. Relationship btween permeability and microstructure of concrete[J]. China Concrete and Cement Products, 2004(2): 6-8 (in Chinese). [81] CUI L, CAHYADI J H. Permeability and pore structure of OPC paste[J]. Cement and Concrete Research, 2001, 31(2): 277-282. [82] 张 驰, 赵镇浩. 水泥砂浆的孔结构与抗渗性[J]. 重庆建筑大学学报, 1996, 18(3): 61-66. ZHANG C, ZHAO Z H. Pore structure and impermeability of cement mortar[J]. Journal of Civil and Environmental Engineering, 1996, 18(3): 61-66 (in Chinese). [83] PRUDNCIO L R Jr. Accelerating admixtures for shotcrete[J]. Cement and Concrete Composites, 1998, 20(2/3): 213-219. [84] 王家滨, 牛荻涛. 喷射混凝土渗透性、孔结构和力学性能关系研究[J]. 硅酸盐通报, 2018, 37(7): 2101-2108. WANG J B, NIU D T. Relationship among permeability, pore structure and mechanical properties of shotcrete[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(7): 2101-2108 (in Chinese). [85] QIU Q W. A state-of-the-art review on the carbonation process in cementitious materials: fundamentals and characterization techniques[J]. Construction and Building Materials, 2020, 247: 118503. [86] LI Y U, WU Q D. Mechanism of carbonation of mortars and the dependence of carbonation on pore structure[J]. Publication of American Concrete Institute, 1987, 100: 1915-1944. [87] HOUST Y F, WITTMANN F H. Influence of porosity and water content on the diffusivity of CO2 and O2 through hydrated cement paste[J]. Cement and Concrete Research, 1994, 24(6): 1165-1176. [88] GAO Y, DE SCHUTTER G, YE G, et al. The ITZ microstructure, thickness and porosity in blended cementitious composite: effects of curing age, water to binder ratio and aggregate content[J]. Composites Part B: Engineering, 2014, 60: 1-13. [89] BASHEER L, BASHEER P A M, LONG A E. Influence of coarse aggregate on the permeation, durability and the microstructure characteristics of ordinary Portland cement concrete[J]. Construction and Building Materials, 2005, 19(9): 682-690. [90] 张 誉, 张伟平, 屈文俊. 混凝土结构耐久性概论[M]. 上海: 上海科学技术出版社, 2003. ZHANG Y, ZHANG W P, QU W J. Introduction to durability of concrete structures[M]. Shanghai: Shanghai Science and Technology Press, 2003 (in Chinese). [91] 董振平. 混凝土碳化深度的随机模型和混凝土结构碳化寿命分析[D]. 西安: 西安建筑科技大学, 1998. DONG Z P. Stochastic model of concrete carbonation depth and carbonation life analysis of concrete structure[D]. Xi'an: Xi'an University of Architecture and Technology, 1998 (in Chinese). [92] 马 蕊. 喷射混凝土碳化及硫酸盐侵蚀试验研究[D]. 西安: 西安建筑科技大学, 2014. MA R. Experimental study on shotcrete carbonation and sulfate attack[D]. Xi'an: Xi'an University of Architecture and Technology, 2014 (in Chinese). [93] 王家滨, 牛荻涛, 马 蕊, 等. 喷射混凝土抗碳化性能试验研究[J]. 河北工业大学学报, 2014, 43(6): 5-9+13. WANG J B, NIU D T, MA R, et al. Research of carbonation resistance of shotcrete under accelerating carbonation test[J]. Journal of Hebei University of Technology, 2014, 43(6): 5-9+13 (in Chinese). [94] 张 丹, 牛荻涛, 王家滨. 硝酸侵蚀与碳化耦合作用下粉煤灰喷射混凝土中性化研究[J]. 混凝土, 2016(5): 91-94. ZHANG D, NIU D T, WANG J B. Neutralization study on fly ash shotcrete under the corrosion of nitric acid and carbonation[J]. Concrete, 2016(5): 91-94 (in Chinese). [95] 马昆林, 谢友均, 龙广成, 等. 水泥基材料在硫酸盐结晶侵蚀下的劣化行为[J]. 中南大学学报(自然科学版), 2010, 41(1): 303-309. MA K L, XIE Y J, LONG G C, et al. Deterioration behaviors of sulfate crystallization attack on cement-based material[J]. Journal of Central South University (Science and Technology), 2010, 41(1): 303-309 (in Chinese). [96] 袁 斌, 牛荻涛, 蒿 洋, 等. 干湿循环与盐湖卤水侵蚀共同作用下喷射混凝土的劣化及其机理[J]. 硅酸盐通报, 2017, 36(2): 607-613+619. YUAN B, NIU D T, HAO Y, et al. Deterioration and mechanism of shotcrete under the combined action of salt lake brine erosion and wetting-drying cycles[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(2): 607-613+619 (in Chinese). [97] 王家滨, 牛荻涛, 马 蕊. 硫酸盐侵蚀喷射混凝土损伤层及微观结构研究[J]. 武汉理工大学学报, 2014, 36(10): 105-112. WANG J B, NIU D T, MA R. Study of damage layer thickness and microstructure of shotcrete after sulfate attack[J]. Journal of Wuhan University of Technology, 2014, 36(10): 105-112 (in Chinese). [98] 张中亚. 硫酸盐环境喷射混凝土细观侵蚀机理及剪切特性研究[D]. 重庆: 重庆大学, 2019. ZHANG Z Y. Mesoscopic erosion mechanism and shear properties of shotcrete materials under sulfate-containing environments[D]. Chongqing: Chongqing University, 2019 (in Chinese). [99] 李志龙. 隧道喷射混凝土的硫酸盐腐蚀特性及使用寿命评价研究[D]. 西安: 长安大学, 2019. LI Z L. Study on sulphate corrosion characteristics and life evaluation of tunnel sprayed shotcrete[D]. Xi'an: Chang'an University, 2019 (in Chinese). [100] OKOCHI H, KAMEDA H, HASEGAWA S I, et al. Deterioration of concrete structures by acid deposition—an assessment of the role of rainwater on deterioration by laboratory and field exposure experiments using mortar specimens[J]. Atmospheric Environment, 2000, 34(18): 2937-2945. [101] 王家滨, 牛荻涛. 硝酸侵蚀喷射混凝土NO-3扩散研究[J]. 西安建筑科技大学学报(自然科学版), 2019, 51(1): 75-82. WANG J B, NIU D T. Study on nitrate ion diffusion of lining shotcrete exposed to nitric acid[J]. Journal of Xi'an University of Architecture & Technology (Natural Science Edition), 2019, 51(1): 75-82 (in Chinese). [102] 周 宇, 牛荻涛, 王家滨. 海洋水下区喷射混凝土中氯离子扩散性能研究[J]. 混凝土, 2014(12): 14-17. ZHOU Y, NIU D T, WANG J B. Experimental research on chloride ion erosion of shotcret in the marine underwater area[J]. Concrete, 2014(12): 14-17 (in Chinese). [103] 王家滨, 牛荻涛. 盐湖卤水侵蚀喷射混凝土衬砌耐久性能退化规律研究[J]. 硅酸盐通报, 2019, 38(1): 33-40. WANG J B, NIU D T. Research on durability performance deterioration rules of brine-exposed shotcrete in salt lake environment[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(1): 33-40 (in Chinese). |
[1] | 蔺鹏臻, 任锦波. 盐碱环境下氯化物侵蚀对混凝土桥梁耐久性的影响[J]. 硅酸盐通报, 2024, 43(9): 3235-3243. |
[2] | 王浩, 谭盐宾, 刘星, 杨鲁, 元强, 谢斌福, 刘博. 火成岩质矿物材料对混凝土性能的影响[J]. 硅酸盐通报, 2024, 43(9): 3244-3251. |
[3] | 崔丽君, 乔宏霞, 曹锋, 舒修远, 盛程辉. 青稞秸秆灰改性氯氧镁水泥砂浆防护钢筋混凝土的损伤特性[J]. 硅酸盐通报, 2024, 43(9): 3282-3293. |
[4] | 周健, 李伟华, 皮振宇, 徐名凤, 李辉, 聂松. 硫铝酸盐水泥基材料抗碳化性能研究进展[J]. 硅酸盐通报, 2024, 43(8): 2711-2725. |
[5] | 王锦辉, 陆春华, 冯晨阳, 朱学武. 配FRP矩形箍混凝土梁的受剪承载力研究现状[J]. 硅酸盐通报, 2024, 43(8): 2726-2736. |
[6] | 伍勇华, 易昂, 何娟, 匡玉峰, 原毅冰. 纳米C-S-H/PCE对蒸养UHPC力学性能增强机理研究[J]. 硅酸盐通报, 2024, 43(8): 2797-2805. |
[7] | 李琳, 王宇, 马玉莹, 沈寒琪, 罗江红. 基于正交试验的泡沫混凝土导热性能和孔结构研究[J]. 硅酸盐通报, 2024, 43(8): 2888-2896. |
[8] | 吴寅佳, 王新杰, 朱平华, 孙伟豪, 熊磊. 再生细骨料对高延性水泥基复合材料力学性能及碳化耐久性的影响[J]. 硅酸盐通报, 2024, 43(8): 2984-2995. |
[9] | 邓鑫, 李军, 卢忠远, 李晓英, 侯莉, 蒋俊, 犹娅, 张俊瑾, 何科文. 全再生骨料堆石混凝土性能研究[J]. 硅酸盐通报, 2024, 43(8): 2996-3004. |
[10] | 张玉栋, 张佳帅, 贾吉龙, 李晓辰, 霍刚, 谢龙, 孟志鹏, 高玉增, 曹颖卓. 粗骨料全替代再生混凝土的孔结构与力学性能分析[J]. 硅酸盐通报, 2024, 43(8): 3005-3016. |
[11] | 张维东, 汪愿, 宋鹏飞, 王亚坤, 刘倩倩, 王旭昊. 高寒区混凝土多场耦合损伤劣化机制研究进展[J]. 硅酸盐通报, 2024, 43(7): 2317-2334. |
[12] | 余金虎, 李强, 刘学应, 周曙光, 王超. 地质聚合物混凝土抗氯离子渗透性能研究进展[J]. 硅酸盐通报, 2024, 43(7): 2503-2513. |
[13] | 李卫红, 郭文斌, 郭向兵, 陈潇, 周明凯. CFB灰渣混凝土的组成设计与应用研究[J]. 硅酸盐通报, 2024, 43(7): 2530-2538. |
[14] | 万赣, 匡猛, 黄思源, 张琎珺, 王平, 张声洲. 碳热还原氮化硅藻土制备Si2N2O/SiC复合粉体[J]. 硅酸盐通报, 2024, 43(7): 2680-2684. |
[15] | 王小燕, 叶武平, 曹力强. 可再分散乳胶粉对钢结构界面砂浆的性能影响和机理分析[J]. 硅酸盐通报, 2024, 43(6): 1999-2004. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||