[1] ZHANG X L, ZHANG S Y, LIU H, et al. Disposal of mine tailings via geopolymerization[J]. Journal of Cleaner Production, 2021, 284: 124756. [2] PERUMAL P, PIEKKARI K, SREENIVASAN H, et al. One-part geopolymers from mining residues: effect of thermal treatment on three different tailings[J]. Minerals Engineering, 2019, 144: 106026. [3] 张 骞, 蓝桥发, 郭浩然, 等. 粉煤灰基地质聚合物固化低放射性稀土酸溶渣[J]. 有色金属(冶炼部分), 2023(7): 75-83. ZHANG Q, LAN Q F, GUO H R, et al. Immobilization of low radioactive rare earth acid soluble slag by fly ash based geopolymer[J]. Nonferrous Metals (Extractive Metallurgy), 2023(7): 75-83 (in Chinese). [4] 刘 泽, 周 瑜, 孔凡龙, 等. 碱激发矿渣基地质聚合物微观结构与性能研究[J]. 硅酸盐通报, 2017, 36(6): 1830-1834. LIU Z, ZHOU Y, KONG F L, et al. Microstructure and properties of alkali-activated blast furnace slag based geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(6): 1830-1834 (in Chinese). [5] 罗 哲, 黄敦文, 彭 晖. 碱激发偏高岭土-矿渣砂浆的碱骨料反应机理研究[J]. 硅酸盐通报, 2023, 42(8): 2830-2836. LUO Z, HUANG D W, PENG H. Alkali-aggregate reaction mechanism of alkali-activated metakaolin-slag mortar[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(8): 2830-2836 (in Chinese). [6] 吕政晔, 张延博, 刘 泽, 等. 赤泥基发泡地质聚合物的性能研究[J]. 硅酸盐通报, 2023, 42(10): 3624-3632. LYU Z Y, ZHANG Y B, LIU Z, et al. Properties of red mud-based foamed geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(10): 3624-3632 (in Chinese). [7] 居辰轩, 王豪杰, 侯浩波, 等. 热活化铅锌尾矿基碱激发胶凝材料的制备及性能[J]. 硅酸盐通报, 2022, 41(6): 2071-2081. JU C X, WANG H J, HOU H B, et al. Preparation and properties of alkali activated cementitious materials based on thermally activated lead-zinc tailings[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(6): 2071-2081 (in Chinese). [8] 郝明月, 李 静, 蔡基伟, 等. 磁铁尾矿砂在水泥基材料中的化学稳定性研究[J]. 硅酸盐通报, 2023, 42(10): 3688-3694. HAO M Y, LI J, CAI J W, et al. Chemical stability of magnetite tailings in cement-based materials[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(10): 3688-3694 (in Chinese). [9] 覃风展. 浅谈尾矿库环境污染隐患及防治对策[J]. 有色金属设计, 2023, 50(1): 12-15. QIN F Z. Discussion on risk of environmental pollution of TSF and the control measures[J]. Nonferrous Metals Design, 2023, 50(1): 12-15 (in Chinese). [10] OBENAUS-EMLER R, FALAH M, ILLIKAINEN M. Assessment of mine tailings as precursors for alkali-activated materials for on-site applications[J]. Construction and Building Materials, 2020, 246: 118470. [11] DABBEBI R, BARROSO DE AGUIAR J L, BAKLOUTI S. Spectroscopic and microscopic study of alkali activated mortars based on Tunisian phosphate washing waste[J]. Cement and Concrete Composites, 2020, 105: 103449. [12] WU J, LI J, RAO F, et al. Mechanical property and structural evolution of alkali-activated slag-phosphate mine tailings mortars[J]. Chemosphere, 2020, 251: 126367. [13] WEI B, ZHANG Y M, BAO S X. Preparation of geopolymers from vanadium tailings by mechanical activation[J]. Construction and Building Materials, 2017, 145: 236-242. [14] LIU Q, LI X C, CUI M Y, et al. Preparation of eco-friendly one-part geopolymers from gold mine tailings by alkaline hydrothermal activation[J]. Journal of Cleaner Production, 2021, 298: 126806. [15] LIU Q, SUN S K, JIA Z, et al. Effect of CaO on hydration properties of one-part alkali-activated material prepared from tailings through alkaline hydrothermal activation[J]. Construction and Building Materials, 2021, 308: 124931. [16] GARCIA-LODEIRO I, PALOMO A, FERNÁNDEZ-JIMÉNEZ A, et al. Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O-CaO-Al2O3-SiO2-H2O[J]. Cement and Concrete Research, 2011, 41(9): 923-931. [17] BELMOKHTAR N, AMMARI M, BRIGUI J, et al. Comparison of the microstructure and the compressive strength of two geopolymers derived from metakaolin and an industrial sludge[J]. Construction and Building Materials, 2017, 146: 621-629. [18] 安 赛, 王宝民, 陈文秀, 等. 矿渣-电石渣基地质聚合物的性能及作用机制[J]. 硅酸盐通报, 2023, 42(11): 3996-4005. AN S, WANG B M, CHEN W X, et al. Performance and action mechanism of slag-carbide slag based geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(11): 3996-4005 (in Chinese). [19] ZHANG D W, ZHAO K F, XIE F Z, et al. Effect of water-binding ability of amorphous gel on the rheology of geopolymer fresh pastes with the different NaOH content at the early age[J]. Construction and Building Materials, 2020, 261: 120529. [20] 潘荣祥, 杨 敏, 袁 宏. 减水剂对赤泥-粉煤灰基地质聚合物性能的影响[J]. 硅酸盐通报, 2023, 42(9): 3212-3220. PAN R X, YANG M, YUAN H. Effects of water reducing agents on performance of red mud-fly ash based geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(9): 3212-3220 (in Chinese). [21] 朱绘美, 张煜雯, 迂 晨, 等. 微波养护阶段碱激发粉煤灰胶凝材料的力学性能[J]. 建筑材料学报, 2022, 25(6): 558-564. ZHU H M, ZHANG Y W, YU C, et al. Mechanical properties of alkali-activated fly ash cementitious materials under microwave curing stages[J]. Journal of Building Materials, 2022, 25(6): 558-564 (in Chinese). [22] YAO G, LIU Q, WANG J X, et al. Effect of mechanical grinding on pozzolanic activity and hydration properties of siliceous gold ore tailings[J]. Journal of Cleaner Production, 2019, 217: 12-21. [23] WANG J X, LYU X J, WANG L Y, et al. Influence of the combination of calcium oxide and sodium carbonate on the hydration reactivity of alkali-activated slag binders[J]. Journal of Cleaner Production, 2018, 171: 622-629. [24] ABDALQADER A F, JIN F, AL-TABBAA A. Development of greener alkali-activated cement: utilisation of sodium carbonate for activating slag and fly ash mixtures[J]. Journal of Cleaner Production, 2016, 113: 66-75. [25] TOBÁN J I, PAYÁ J J, BORRACHERO M V, et al. Mineralogical evolution of Portland cement blended with silica nanoparticles and its effect on mechanical strength[J]. Construction and Building Materials, 2012, 36: 736-742. [26] 李莅山. 明矾石综合利用科研现状和进展[J]. 浙江化工, 1992, 23(3): 56-58. LI L S. Present situation and progress of scientific research on comprehensive utilization of alunite[J]. Zhejiang Chemical Industry, 1992, 23(3): 56-58 (in Chinese). [27] 李 达, 蒋开喜, 蒋训雄, 等. 明矾石精矿焙烧脱水机理研究[J]. 中国资源综合利用, 2014, 32(11): 20-23. LI D, JIANG K X, JIANG X X, et al. A study on the mechanism of dehydration of alunite ore by roasting[J]. China Resources Comprehensive Utilization, 2014, 32(11): 20-23 (in Chinese). [28] JEONG Y, PARK H, JUN Y B, et al. Influence of slag characteristics on strength development and reaction products in a CaO-activated slag system[J]. Cement and Concrete Composites, 2016, 72: 155-167. [29] WAN Q, ZHANG Y M, ZHANG R B. The effect of pore behavior and gel structure on the mechanical property at different initial water content[J]. Construction and Building Materials, 2021, 309: 125146. [30] 陈永亮, 张轶轲, 陈铁军, 等. 碱激发高钙粉煤灰发泡地聚合物的制备及机理[J]. 硅酸盐通报, 2023, 42(8): 2787-2798. CHEN Y L, ZHANG Y K, CHEN T J, et al. Preparation and mechanism of foaming geopolymer with alkali activated high calcium fly ash[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(8): 2787-2798 (in Chinese). |