[1] MOUMIN G, RYSSEL M, ZHAO L, et al. CO2 emission reduction in the cement industry by using a solar calciner[J]. Renewable Energy, 2020, 145: 1578-1596. [2] SCRIVENER K, MARTIRENA F, BISHNOI S, et al. Calcined clay limestone cements (LC3)[J]. Cement and Concrete Research, 2018, 114: 49-56. [3] ZUNINO F, SCRIVENER K. Microstructural developments of limestone calcined clay cement (LC3) pastes after long-term (3 years) hydration[J]. Cement and Concrete Research, 2022, 153: 106693. [4] BLOUCH N, RASHID K, ZAFAR I, et al. Prioritization of low-grade kaolinite and mixed clays for performance evaluation of limestone calcined clay cement: multi-criteria assessment[J]. Applied Clay Science, 2023, 243: 107080. [5] HOLLANDERS S, ADRIAENS R, SKIBSTED J, et al. Pozzolanic reactivity of pure calcined clays[J]. Applied Clay Science, 2016, 132: 552-560. [6] TANG J, WEI S F, LI W F, et al. Synergistic effect of metakaolin and limestone on the hydration properties of Portland cement[J]. Construction and Building Materials, 2019, 223: 177-184. [7] 孙 婧, 刘宏波, 王 宏, 等. 基于Design-expert的铁尾矿活性粉末混凝土配合比优化试验研究[J]. 硅酸盐通报, 2020, 39(3): 762-769. SUN J, LIU H B, WANG H, et al. Mix ratio optimization of reactive powder concrete with iron tailings based on design-expert[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(3): 762-769 (in Chinese). [8] 王鹏博, 尹冠生, 冯俊杰, 等. 基于NSGA-Ⅱ与熵权TOPSIS法的混杂纤维再生混凝土配合比多目标优化[J]. 硅酸盐通报, 2022, 41(12): 4189-4201. WANG P B, YIN G S, FENG J J, et al. Multi-objective optimization of mix proportion of hybrid fiber recycled aggregate concrete based on NSGA-Ⅱ and entropy weight TOPSIS method[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(12): 4189-4201 (in Chinese). [9] 张兰芳, 翟建锦. 基于响应面法的碱激发水泥砂浆配合比优化[J]. 硅酸盐通报, 2019, 38(11): 3619-3624. ZHANG L F, ZHAI J J. Mixture ratio optimization of alkali-activated cement mortar based on response surface method[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(11): 3619-3624 (in Chinese). [10] 彭 晖, 崔 潮, 蔡春声, 等. 偏高岭土活性的煅烧温度影响及测定方法研究[J]. 硅酸盐通报, 2014, 33(8): 2078-2084+2094. PENG H, CUI C, CAI C S, et al. Research on influence of calcination temperature on metakaolin reactivity and its determination[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(8): 2078-2084+2094 (in Chinese). [11] 诸华军, 姚 晓, 张祖华. 高岭土煅烧活化温度的初选[J]. 建筑材料学报, 2008, 11(5): 621-625. ZHU H J, YAO X, ZHANG Z H. Optimization of calcined temperature for kaolin activation[J]. Journal of Building Materials, 2008, 11(5): 621-625 (in Chinese). [12] 刘子仪, 宋少民. 基于响应面法的混杂纤维-复合胶凝材料体系优化设计[J]. 硅酸盐通报, 2023, 42(12): 4197-4207+4215. LIU Z Y, SONG S M. Optimal design of hybrid fiber-composite cementitious material system based on response surface methodology[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(12): 4197-4207+4215 (in Chinese). [13] 胡 静, 张品乐, 吴 磊, 等. 基于响应面法的ECC基体力学性能研究与配合比优化[J]. 材料导报, 2022, 36(增刊 2): 173-177. HU J, ZHANG P L, WU L, et al. Research on mechanical properties and mix optimization of ECC matrix based on response surface methodology[J]. Materials Reports, 2022, 36(supplement 2): 173-177 (in Chinese). [14] 刘树龙, 李公成, 刘国磊, 等. 基于响应面法的矿渣基全固废胶凝材料配比优化[J]. 硅酸盐通报, 2021, 40(1): 187-193. LIU S L, LI G C, LIU G L, et al. Ratio optimization of slag-based solid waste cementitious material based on response surface method[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(1): 187-193 (in Chinese). [15] 乔春雨, 倪 文, 王长龙. 较大偏高岭土掺量下偏高岭土-水泥硬化浆体性能与微观结构[J]. 建筑材料学报, 2015, 18(3): 393-399. QIAO C Y, NI W, WANG C L. Properties and microstructure of metakaolin(MK)-cement hardened slurry with high use level of MK[J]. Journal of Building Materials, 2015, 18(3): 393-399 (in Chinese). [16] 卢都友, 张少华, 徐江涛, 等. 石灰石微粉与偏高岭土复合对水泥强度和水化产物的影响[J]. 硅酸盐学报, 2017, 45(5): 662-667. LU D Y, ZHANG S H, XU J T, et al. Effects of limestone powder and metakaolin on strength and hydration assemblages of blended cements[J]. Journal of the Chinese Ceramic Society, 2017, 45(5): 662-667 (in Chinese). [17] 乔春雨, 倪 文, 王长龙. 较大偏高岭土掺量下水泥基材料的水化和性能[J]. 建筑材料学报, 2015, 18(5): 757-762. QIAO C Y, NI W, WANG C L. Hydration and mechanical properties of cement-based materials with high use level of metakaolin[J]. Journal of Building Materials, 2015, 18(5): 757-762 (in Chinese). [18] WANG H, HOU P K, LI Q F, et al. Synergistic effects of supplementary cementitious materials in limestone and calcined clay-replaced slag cement[J]. Construction and Building Materials, 2021, 282: 122648. [19] TANG J, WEI S F, LI W F, et al. Synergistic effect of metakaolin and limestone on the hydration properties of Portland cement[J]. Construction and Building Materials, 2019, 223: 177-184. [20] 董烨民, 钱 雄, 胡传林, 等. 新型胶凝材料: 石灰石煅烧黏土水泥研究进展[J]. 硅酸盐学报, 2023, 51(9): 2446-2464. DONG Y M, QIAN X, HU C L, et al. New cementitious material: advances in limestone calcined clay cement[J]. Journal of the Chinese Ceramic Society, 2023, 51(9): 2446-2464 (in Chinese). |