硅酸盐通报 ›› 2024, Vol. 43 ›› Issue (10): 3499-3509.
• 水泥混凝土 • 下一篇
刘茂军, 许国平
收稿日期:
2024-03-05
修订日期:
2024-04-22
出版日期:
2024-10-15
发布日期:
2024-10-16
作者简介:
刘茂军(1971—),男,教授。主要从事新型混凝土及其耐久性的研究。E-mail:liumaojun999@163.com
基金资助:
LIU Maojun, XU Guoping
Received:
2024-03-05
Revised:
2024-04-22
Published:
2024-10-15
Online:
2024-10-16
摘要: 植物纤维具有质量轻、比强度高、断裂伸长率大等特点,可改善混凝土易开裂、抗拉强度低、脆性破坏等缺点,还可以提高混凝土的保温性能和耐久性。本文首先分析了各种常用植物纤维的化学成分和力学特征,以及植物纤维的改性方法,然后对国内外学者在植物纤维增强混凝土力学性能、水化特性、保温性能及其他性能方面的研究进行了详细的分析和归纳,并得出了以下结论:利用植物纤维增强混凝土强度时,长纤维平铺法对抗拉强度的增强效果最好,而短纤维内掺法具有更广的应用范围,同时,纤维长度、纤维含量、水灰比等多种因素都会影响混凝土的力学性能;植物纤维能通过改变水泥的水化特性来延缓水化热的释放,从而增强大体积混凝土的抗裂性能;植物纤维能够改善混凝土的保温性能和耐久性,并可通过植物纤维对混凝土的内养护作用,减少混凝土的开裂。
中图分类号:
刘茂军, 许国平. 植物纤维增强混凝土性能研究进展[J]. 硅酸盐通报, 2024, 43(10): 3499-3509.
LIU Maojun, XU Guoping. Advances in Properties of Plant Fiber Reinforced Concrete[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(10): 3499-3509.
[1] 龚明子, 潘阿馨, 张子龙, 等. 超高性能纤维增强混凝土中钢纤维拔出行为研究[J]. 硅酸盐通报, 2023, 42(8): 2764-2772. GONG M Z, PAN A X, ZHANG Z L, et al. Pull-out behaviour of steel fiber in ultra-high performance fiber reinforced concrete[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(8): 2764-2772 (in Chinese). [2] 尹俊红, 纪艳春, 赫中营, 等. 碳纤维混凝土力学性能研究[J]. 混凝土, 2023(1): 64-67+72. YIN J H, JI Y C, HE Z Y, et al. Study on mechanical properties of carbon fiber reinforced concrete[J]. Concrete, 2023(1): 64-67+72 (in Chinese). [3] 贾文振, 李 磊. 不同应变率下干燥及饱水玄武岩纤维混凝土力学性能[J]. 长江科学院院报, 2023, 40(8): 170-176. JIA W Z, LI L. Mechanical properties of dry and saturated basalt fiber concrete at different strain rates[J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(8): 170-176 (in Chinese). [4] 张永生. 冲击荷载下玄武岩纤维混凝土动态力学特性试验研究[J]. 混凝土, 2023(2): 25-29. ZHANG Y S. Experimental study on dynamic mechanical properties of basalt fiber concrete under impact load[J]. Concrete, 2023(2): 25-29 (in Chinese). [5] 杨国梁, 李 峰, 张志飞, 等. 聚乙烯醇纤维混凝土动态断裂过程试验研究[J]. 硅酸盐通报, 2023, 42(2): 454-462. YANG G L, LI F, ZHANG Z F, et al. Experimental study on dynamic fracture process of polyvinyl alcohol fiber concrete[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(2): 454-462 (in Chinese). [6] 牛海成, 高锦龙, 李国利, 等. 聚乙烯醇纤维高强再生混凝土梁抗弯性能研究[J]. 实验力学, 2023, 38(5): 634-644. NIU H C, GAO J L, LI G L, et al. Study on flexural behavior of high-strength recycled aggregate concrete beams with polyvinyl alcohol fiber[J]. Journal of Experimental Mechanics, 2023, 38(5): 634-644 (in Chinese). [7] 冯新新, 左 涛, 孙 宁, 等. 秸秆成型燃料集中供暖工程温室气体减排效应[J]. 中国生态农业学报(中英文), 2022, 30(4): 702-712. FENG X X, ZUO T, SUN N, et al. Greenhouse gas emission reduction effect of a straw briquette central heating system[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 702-712 (in Chinese). [8] LI M, PU Y Q, THOMAS V M, et al. Recent advancements of plant-based natural fiber-reinforced composites and their applications[J]. Composites Part B: Engineering, 2020, 200: 108254. [9] 陈宣东, 刘光焰, 王晓峰, 等. 剑麻纤维增强水泥基复合材料研究进展[J]. 硅酸盐通报, 2018, 37(11): 3481-3486+3491. CHEN X D, LIU G Y, WANG X F, et al. Research progress on sisal fiber reinforced cement-based composite materials[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(11): 3481-3486+3491 (in Chinese). [10] LI X, TABIL L G, PANIGRAHI S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review[J]. Journal of Polymers and the Environment, 2007, 15(1): 25-33. [11] MADHWANI H, SATHYAN D, MINI K M. Study on durability and hardened state properties of sugarcane bagasse fiber reinforced foam concrete[J]. Materials Today: Proceedings, 2021, 46: 4782-4787. [12] TALAVERA-PECH W A, MONTIEL-RODRÍGUEZ D, PAAT-ESTRELLA J D L A, et al. Improvement in the carbonation resistance of construction mortar with cane bagasse fiber added[J]. Materials, 2021, 14(8): 2066. [13] 郭宜杭, 李 黎, 杨晨欣, 等. 植物纤维增强混凝土研究进展[J]. 硅酸盐通报, 2022, 41(10): 3347-3358. GUO Y H, LI L, YANG C X, et al. Research progress of plant fiber reinforced concrete[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(10): 3347-3358 (in Chinese). [14] YAN L B, KASAL B, HUANG L. A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering[J]. Composites Part B: Engineering, 2016, 92: 94-132. [15] ONUAGULUCHI O, BANTHIA N. Plant-based natural fibre reinforced cement composites: a review[J]. Cement and Concrete Composites, 2016, 68: 96-108. [16] WEN C C, ZHANG P, WANG J, et al. Influence of fibers on the mechanical properties and durability of ultra-high-performance concrete: a review[J]. Journal of Building Engineering, 2022, 52: 104370. [17] MUNAWAR S S, UMEMURA K, KAWAI S. Characterization of the morphological, physical, and mechanical properties of seven nonwood plant fiber bundles[J]. Journal of Wood Science, 2007, 53(2): 108-113. [18] 姜平伟, 方江华, 庞建勇, 等. 植物纤维喷射混凝土力学及微观性能分析[J]. 长江科学院院报, 2020, 37(8): 137-141+149. JIANG P W, FANG J H, PANG J Y, et al. Mechanical properties and micro-properties of plant fiber shotcrete[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(8): 137-141+149 (in Chinese). [19] WEI J Q, MEYER C. Degradation mechanisms of natural fiber in the matrix of cement composites[J]. Cement and Concrete Research, 2015, 73: 1-16. [20] DE KLERK M, KAYONDO M, MOELICH G, et al. Durability of chemically modified sisal fibre in cement-based composites[J]. Construction and Building Materials, 2020, 241: 117835. [21] FILHO J A M, SILVA F A, FILHO R D T. Degradation kinetics and aging mechanisms on sisal fiber cement composite systems[J]. Cement and Concrete Composites, 2013, 40: 30-39. [22] BONNET-MASIMBERT P A, GAUVIN F, BROUWERS H J H, et al. Study of modifications on the chemical and mechanical compatibility between cement matrix and oil palm fibres[J]. Results in Engineering, 2020, 7: 100150. [23] FERREIRA S R, DE ANDRADE SILVA F, LIMA P R L, et al. Effect of hornification on the structure, tensile behavior and fiber matrix bond of sisal, jute and curauá fiber cement based composite systems[J]. Construction and Building Materials, 2017, 139: 551-561. [24] FERREIRA S R, DE ANDRADE SILVA F, LIMA P R L, et al. Effect of fiber treatments on the sisal fiber properties and fiber-matrix bond in cement based systems[J]. Construction and Building Materials, 2015, 101: 730-740. [25] CLARAMUNT J, ARDANUY M, GARCÍA-HORTAL J A, et al. The hornification of vegetable fibers to improve the durability of cement mortar composites[J]. Cement and Concrete Composites, 2011, 33(5): 586-595. [26] LIU L F, YU J Y, CHENG L D, et al. Mechanical properties of poly(butylene succinate) (PBS) biocomposites reinforced with surface modified jute fibre[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(5): 669-674. [27] CLÁUDIA D S A, GATTI C F, JOSÉ D S R, et al. Modification of short sugarcane bagasse fibres for application in cementitious composites: a statistical approach to mechanical and physical properties[J]. Construction and Building Materials, 2022, 353: 129072. [28] SAWSEN C, FOUZIA K, MOHAMED B, et al. Effect of flax fibers treatments on the rheological and the mechanical behavior of a cement composite[J]. Construction and Building Materials, 2015, 79: 229-235. [29] SELLAMI A, MERZOUD M, AMZIANE S. Improvement of mechanical properties of green concrete by treatment of the vegetals fibers[J]. Construction and Building Materials, 2013, 47: 1117-1124. [30] FAROOQI M U, ALI M. Effect of pre-treatment and content of wheat straw on energy absorption capability of concrete[J]. Construction and Building Materials, 2019, 224: 572-583. [31] LEE S G, CHOI S S, PARK W H, et al. Characterization of surface modified flax fibers and their biocomposites with PHB[J]. Macromolecular Symposia, 2003, 197(1): 89-100. [32] SUN D. Surface modification of natural fibers using plasma treatment: Biodegradable green composites[M]. Hoboken: John Wiley & Sons Inc, 2016: 18-39. [33] BARRA B N, SANTOS S F, BERGO P V A, et al. Residual sisal fibers treated by methane cold plasma discharge for potential application in cement based material[J]. Industrial Crops and Products, 2015, 77: 691-702. [34] SILVA F D A, MOBASHER B, FILHO R D T. Cracking mechanisms in durable sisal fiber reinforced cement composites[J]. Cement and Concrete Composites, 2009, 31(10): 721-730. [35] 尚 君, 赵铁军, 王兰芹, 等. 高韧性植物纤维增强水泥基材料单轴拉伸试验研究[J]. 硅酸盐通报, 2019, 38(1): 218-223+230. SHANG J, ZHAO T J, WANG L Q, et al. Research on direct tensile experiments of high ductile vegetable fiber reinforced cementitious composites[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(1): 218-223+230 (in Chinese). [36] AZZMI N M, YATIM J M. Kenaf fibrous concrete: mechanical properties with different fiber volume fraction[J]. International Journal on Advanced Science, Engineering and Information Technology, 2018, 8(4): 1036. [37] LAM T F, BIN MOHAMAD YATIM J. Mechanical properties of kenaf fiber reinforced concrete with different fiber content and fiber length[J]. Journal of Asian Concrete Federation, 2015, 1(1): 11-21. [38] BABATUNDE O E, YATIM J M, RAZAVI M, et al. Experimental study of kenaf bio fibrous concrete composites[J]. Advanced Science Letters, 2018, 24(6): 3922-3927. [39] ABBAS A G N, AZIZ F N A A, ABDAN K, et al. Kenaf fibre reinforced cementitious composites[J]. Fibers, 2022, 10(1): 3. [40] ZHOU C H, CAI L P, CHEN Z P, et al. Effect of kenaf fiber on mechanical properties of high-strength cement composites[J]. Construction and Building Materials, 2020, 263: 121007. [41] 张鹄志, 胡 浩, 张丹凤, 等. 黄蒿纤维增强混凝土的受力性能试验研究[J]. 功能材料, 2019, 50(11): 11138-11143. ZHANG H Z, HU H, ZHANG D F, et al. Experimental investigation on the mechanical properties of Artemisia annua fiber reinforced concrete[J]. Journal of Functional Materials, 2019, 50(11): 11138-11143 (in Chinese). [42] ÇOMAK B, BIDECI A, BIDECI Ö S. Effects of hemp fibers on characteristics of cement based mortar[J]. Construction and Building Materials, 2018, 169: 794-799. [43] NARAGANTI S R, PANNEM R M R, PUTTA J. Impact resistance of hybrid fibre reinforced concrete containing sisal fibres[J]. Ain Shams Engineering Journal, 2019, 10(2): 297-305. [44] GUPTA M, KUMAR M. Effect of nano silica and coir fiber on compressive strength and abrasion resistance of concrete[J]. Construction and Building Materials, 2019, 226: 44-50. [45] ISLAM M S, AHMED S J. Influence of jute fiber on concrete properties[J]. Construction and Building Materials, 2018, 189: 768-776. [46] 刘巧玲, 刘保华, 张 强. 油菜秸秆纤维混凝土力学性能研究[J]. 混凝土与水泥制品, 2012(12): 51-53. LIU Q L, LIU B H, ZHANG Q. Research on mechanical properties of cole straw fiber reinforced concrete[J]. China Concrete and Cement Products, 2012(12): 51-53 (in Chinese). [47] 张学元, 王丹丹, 张道明, 等. 稻草纤维轻骨料混凝土力学性能影响因素研究[J]. 硅酸盐通报, 2019, 38(5): 1369-1376. ZHANG X Y, WANG D D, ZHANG D M, et al. Study on factors affecting mechanical properties of lightweight aggregate concrete mixed with straw fiber[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(5): 1369-1376 (in Chinese). [48] 李超飞, 苏有文, 陈国平, 等. 稻草纤维混凝土性能研究[J]. 混凝土, 2013(10): 30-32+37. LI C F, SU Y W, CHEN G P, et al. Study on properties of straw fiber reinforced concrete[J]. Concrete, 2013(10): 30-32+37 (in Chinese). [49] AL-ORAIMI S K, SEIBI A C. Mechanical characterisation and impact behaviour of concrete reinforced with natural fibres[J]. Composite Structures, 1995, 32(1/2/3/4): 165-171. [50] 谢晓丽. 植物纤维改性水泥基复合材料的制备与力学性能研究[D]. 成都: 西南交通大学, 2016. XIE X L. Preparation of cement based composites reinforced with plant fiber and their mechanical properties[D]. Chengdu: Southwest Jiaotong University, 2016 (in Chinese). [51] HWANG C L, TRAN V A, HONG J W, et al. Effects of short coconut fiber on the mechanical properties, plastic cracking behavior, and impact resistance of cementitious composites[J]. Construction and Building Materials, 2016, 127: 984-992. [52] MA H Y, YUE C J, YU H F, et al. Experimental study and numerical simulation of impact compression mechanical properties of high strength coral aggregate seawater concrete[J]. International Journal of Impact Engineering, 2020, 137: 103466. [53] RAMAKRISHNA G, SUNDARARAJAN T. Impact strength of a few natural fibre reinforced cement mortar slabs: a comparative study[J]. Cement and Concrete Composites, 2005, 27(5): 547-553. [54] RIBEIRO B, YAMAMOTO T, YAMASHIKI Y. A study on the reduction in hydration heat and thermal strain of concrete with addition of sugarcane bagasse fiber[J]. Materials, 2020, 13(13): 3005. [55] CHAKRABORTY S, KUNDU S P, ROY A, et al. Effect of jute as fiber reinforcement controlling the hydration characteristics of cement matrix[J]. Industrial & Engineering Chemistry Research, 2013, 52(3): 1252-1260. [56] 白诗淇. 植物纤维混凝土性能研究[J]. 中国新技术新产品, 2020(24): 73-75. BAI S Q. Study on properties of plant fiber concrete[J]. New Technology & New Products of China, 2020(24): 73-75 (in Chinese). [57] WANG G H, HAN Y. Research on the performance of straw fiber concrete[J]. IOP Conference Series: Materials Science and Engineering, 2018, 394: 032080. [58] 陈 兵, 刘 宁. 基于磷酸镁水泥的植物茎秆增强混凝土试验研究[J]. 建筑材料学报, 2016, 19(6): 1046-1050. CHEN B, LIU N. Experimental investigation on green concrete using magnesium phosphate cement (MPC) and rape stalk[J]. Journal of Building Materials, 2016, 19(6): 1046-1050 (in Chinese). [59] ONÉSIPPE C, PASSE-COUTRIN N, TORO F, et al. Sugar cane bagasse fibres reinforced cement composites: thermal considerations[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(4): 549-556. [60] 亢 毅. 利用秸秆资源开发农村建筑墙体材料制品的研究[D]. 兰州: 兰州理工大学, 2014. KANG Y. Study on using straw resources developing rural building wall products[D]. Lanzhou: Lanzhou University of Technology, 2014 (in Chinese). [61] 封凌竹. 小麦秸秆-镁水泥复合保温砂浆研制及性能研究[D]. 泰安: 山东农业大学, 2016. FENG L Z. Study on preparation and performance research of wheat straw-MOC composite insulation mortar[D]. Taian: Shandong Agricultural University, 2016 (in Chinese). [62] 倪 源, 孙林柱, 吴 庆, 等. 植物纤维增强保温砂浆性能试验研究[J]. 新型建筑材料, 2014, 41(7): 82-86. NI Y, SUN L Z, WU Q, et al. Study on property test of thermal insulation mortar mixed with plant fiber[J]. New Building Materials, 2014, 41(7): 82-86 (in Chinese). [63] 杨 玲. 改性稻草秸秆水泥基复合材料的性能研究[D]. 武汉: 武汉轻工大学, 2020. YANG L. Research of modified straw cement-basedmaterials[D]. Wuhan: Wuhan Polytechnic University, 2020 (in Chinese). [64] 陈 毅, 梁永哲, 刘大翔, 等. 植物纤维加筋对植被混凝土抗冻耐久性的影响[J]. 湖北农业科学, 2015, 54(19): 4840-4844. CHEN Y, LIANG Y Z, LIU D X, et al. Plant fiber reinforced effects on resistance durability of vegetation-growing concrete frost[J]. Hubei Agricultural Sciences, 2015, 54(19): 4840-4844 (in Chinese). [65] 巩亚琦. 黄麻纤维高强混凝土性能试验研究[D]. 鞍山: 辽宁科技大学, 2018. GONG Y Q. Experimental study on performance of jute fiber high strength concrete[D]. Anshan: University of Science and Technology Liaoning, 2018 (in Chinese). [66] 徐 鹏, 张 研, 荆 杰, 等. 混凝土中氯离子侵蚀综述[J]. 混凝土, 2017(9): 45-48. XU P, ZHANG Y, JING J, et al. Summary of research on concrete eroded by chloride ions[J]. Concrete, 2017(9): 45-48 (in Chinese). [67] 王继博, 任慧超, 张 涛, 等. 麦秸秆纤维混凝土抗氯离子渗透性能研究[J]. 新型建筑材料, 2018, 45(11): 131-133+138. WANG J B, REN H C, ZHANG T, et al. Study on resistance to chloride ion penetration of wheat straw fiber concrete[J]. New Building Materials, 2018, 45(11): 131-133+138 (in Chinese). [68] JENSEN O M, HANSEN P F. Autogenous deformation and RH-change in perspective[J]. Cement and Concrete Research, 2001, 31(12): 1859-1865. [69] 王立成, 张 磊. 混凝土内养护技术研究进展[J]. 建筑材料学报, 2020, 23(6): 1471-1478. WANG L C, ZHANG L. Research progress on concrete internal curing technology[J]. Journal of Building Materials, 2020, 23(6): 1471-1478 (in Chinese). [70] GUO A F, SUN Z H, SATYAVOLU J. Impact of modified kenaf fibers on shrinkage and cracking of cement pastes[J]. Construction and Building Materials, 2020, 264: 120230. [71] 蹇守卫, 汪 婷, 马保国, 等. 改性水稻秸秆对水泥基材料性能影响研究[J]. 材料导报, 2014, 28(6): 132-135. JIAN S W, WANG T, MA B G, et al. Study on the effect of the modified rice straw on the performance of the cement-based materials[J]. Materials Review, 2014, 28(6): 132-135 (in Chinese). [72] 张文潇. 纤维素纤维混凝土耐久性、高温抗爆裂及徐变特性[D]. 南京: 东南大学, 2015. ZHANG W X. Durability, resistance to spalling after high temperature and creep characteristics of cellulose fibre reinforced concrete[D]. Nanjing: Southeast University, 2015 (in Chinese). [73] 刘玉莹. 竹纤维增强水泥砂浆性能研究[D]. 长沙: 中南林业科技大学, 2016. LIU Y Y. Performance research of mortar reinforced with bamboo fiber[D]. Changsha: Central South University of Forestry & Technology, 2016 (in Chinese). [74] 徐 蕾. 应用亚麻纤维减少混凝土塑性收缩开裂的研究[J]. 混凝土, 2013(10): 91-94. XU L. Study of use of flax fibres to reduce the plastic shrinkage cracking in concrete[J]. Concrete, 2013(10): 91-94 (in Chinese). |
[1] | 吴晓刚, 杨健辉, 袁冬冬, 田道坡, 李志超, 王庭辉. 骨料种类对超高性能混凝土性能影响机理研究[J]. 硅酸盐通报, 2024, 43(9): 3164-3172. |
[2] | 赵国庆, 杨进波, 尹航. C-S-H凝胶无定型纳米孔隙中NaCl蒸发结晶分子动力学分析[J]. 硅酸盐通报, 2024, 43(9): 3173-3181. |
[3] | 赵燕茹, 龙思睿, 白建文, 刘明. 高温后风积沙混凝土力学性能与微观结构试验研究[J]. 硅酸盐通报, 2024, 43(9): 3182-3191. |
[4] | 张震洋, 张璐, 伊海赫, 郑润, 马克顺, 张琳, 任梦琪, 王春光. 基于响应面法的地聚物混凝土力学性能试验研究[J]. 硅酸盐通报, 2024, 43(9): 3192-3202. |
[5] | 王萧萧, 董培森, 杨鑫瑞, 张菊, 闫长旺, 董宇飞. 低温作用下钢纤维地聚合物混凝土力学性能研究[J]. 硅酸盐通报, 2024, 43(9): 3203-3213. |
[6] | 黄斌, 龚明子, 潘阿馨, 饶先鹏, 王涛, 陈晨, 黄伟. 减水剂与钢纤维对超高性能混凝土流变及力学性能的影响[J]. 硅酸盐通报, 2024, 43(9): 3214-3223. |
[7] | 李晓帆, 张爽, 周仲煜, 周知, 黄维. 钢筋混凝土水池壁板水平施工缝抗渗性能试验研究[J]. 硅酸盐通报, 2024, 43(9): 3224-3234. |
[8] | 蔺鹏臻, 任锦波. 盐碱环境下氯化物侵蚀对混凝土桥梁耐久性的影响[J]. 硅酸盐通报, 2024, 43(9): 3235-3243. |
[9] | 王浩, 谭盐宾, 刘星, 杨鲁, 元强, 谢斌福, 刘博. 火成岩质矿物材料对混凝土性能的影响[J]. 硅酸盐通报, 2024, 43(9): 3244-3251. |
[10] | 李少平, 单俊伟, 刘小芹, 郭美蓉, 张雪宁, 景宏君, 高萌, 陈少杰. 低温环境下硅灰改性煤矸石混凝土孔隙结构演变[J]. 硅酸盐通报, 2024, 43(9): 3262-3272. |
[11] | 崔丽君, 乔宏霞, 曹锋, 舒修远, 盛程辉. 青稞秸秆灰改性氯氧镁水泥砂浆防护钢筋混凝土的损伤特性[J]. 硅酸盐通报, 2024, 43(9): 3282-3293. |
[12] | 李艳艳, 杜晓丽, 王浩伟, 徐锴. 硅灰-聚丙烯纤维双掺混凝土的动静态力学性能[J]. 硅酸盐通报, 2024, 43(9): 3320-3329. |
[13] | 崔莹莹, 何健辉, 吕民望, 杨露, 刘云鹏. 可完全循环水泥砂浆配料制备贝利特水泥熟料的性能研究[J]. 硅酸盐通报, 2024, 43(9): 3348-3358. |
[14] | 刘宏波, 贾小静, 张博洋, 孙岩, 李泳, 常璞, 孙婧. 双掺石墨烯-氧化石墨烯再生粗骨料混凝土力学性能和抗冻耐久性研究[J]. 硅酸盐通报, 2024, 43(9): 3359-3367. |
[15] | 李北星, 郭裕鑫, 易浩, 金德川. 预湿再生砂与膨胀剂协同作用对再生砂混凝土收缩性能的影响[J]. 硅酸盐通报, 2024, 43(9): 3368-3377. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||