硅酸盐通报 ›› 2024, Vol. 43 ›› Issue (1): 158-171.
王健祥1, 袁建华1, 刘晓2, 杨芸2, 于飞3, 马杰1
收稿日期:
2023-07-25
修订日期:
2023-10-26
出版日期:
2024-01-15
发布日期:
2024-01-16
通信作者:
马 杰,教授。E-mail:jma@tongji.edu.cn
作者简介:
王健祥(1999—),男,硕士研究生。主要从事沸石合成与VOCs吸附的研究。E-mail:2130553@tongji.edu.cn
基金资助:
WANG Jianxiang1, YUAN Jianhua1, LIU Xiao2, YANG Yun2, YU Fei3, MA Jie1
Received:
2023-07-25
Revised:
2023-10-26
Online:
2024-01-15
Published:
2024-01-16
摘要: 挥发性有机化合物(VOCs)是一种常见的工业排放污染源,对人体健康、生态系统有着极强的毒害性。催化氧化是一种节能高效的VOCs去除方法,其关键在于催化剂设计和开发。沸石中酸位点能降低VOCs氧化反应活化能,有效催化VOCs氧化降解,但原始沸石的催化性能无法满足VOCs催化需求。通过合成后调控策略,可使沸石中酸位点密度更高,使其分布更有利于VOC分子和催化位点的接触,从而令沸石催化剂具有更加优异的催化性能。本文首先介绍了沸石中酸位点的形成和酸位点密度、类型的表征技术,之后着重介绍了沸石合成后酸位点的调控策略,包括骨架改性和内外表面改性等,最后列举了通过调控策略得到的沸石催化剂对VOCs的催化性能。在以上内容的基础上,展望了沸石合成后酸位点调控策略未来的研究方向,对推动沸石催化剂应用于工业VOCs高效催化氧化有重要意义。
中图分类号:
王健祥, 袁建华, 刘晓, 杨芸, 于飞, 马杰. 沸石合成后酸位点调控策略及其在VOCs催化氧化中应用进展[J]. 硅酸盐通报, 2024, 43(1): 158-171.
WANG Jianxiang, YUAN Jianhua, LIU Xiao, YANG Yun, YU Fei, MA Jie. Advances in Acid Site Modulation Strategy after Zeolite Synthesis and Its Application in Catalytic Oxidation of VOCs[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(1): 158-171.
[1] RIMER J D, CHAWLA A, LE T T. Crystal engineering for catalysis[J]. Annual Review of Chemical and Biomolecular Engineering, 2018, 9: 283-309. [2] PRIMO A, GARCIA H. Zeolites as catalysts in oil refining[J]. Chemical Society Reviews, 2014, 43(22): 7548-7561. [3] CHANG T, LIU S Y. A low-cost route to prepare Fe-doped ZSM-22 zeolite with the assistance of a precursor solution[J]. New Journal of Chemistry, 2021, 45(34): 15210-15214. [4] WEI X F, LI Y, HUA Z L, et al. One-pot synthesized nickel-doped hierarchically porous beta zeolite for enhanced methanol electrocatalytic oxidation activity[J]. ChemCatChem, 2020, 12(24): 6285-6290. [5] LV G J, DENG S L, YI Z, et al. One-pot synthesis of framework W-doped TS-1 zeolite with robust Lewis acidity for effective oxidative desulfurization[J]. Chemical Communications, 2019, 55(33): 4885-4888. [6] WANG W L, MA X L, GRIMES S, et al. Study on the absorbability, regeneration characteristics and thermal stability of ionic liquids for VOCs removal[J]. Chemical Engineering Journal, 2017, 328: 353-359. [7] LI X Q, ZHANG L, YANG Z Q, et al. Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: a review[J]. Separation and Purification Technology, 2020, 235: 116213. [8] YANG C T, MIAO G, PI Y H, et al. Abatement of various types of VOCs by adsorption/catalytic oxidation: a review[J]. Chemical Engineering Journal, 2019, 370: 1128-1153. [9] LIU B Y, JI J, ZHANG B G, et al. Catalytic ozonation of VOCs at low temperature: a comprehensive review[J]. Journal of Hazardous Materials, 2022, 422: 126847. [10] WEON S, CHOI E, KIM H, et al. Active{001}facet exposed TiO2 nanotubes photocatalyst filter for volatile organic compounds removal: from material development to commercial indoor air cleaner application[J]. Environmental Science & Technology, 2018, 52(16): 9330-9340. [11] SHAYEGAN Z, LEE C S, HAGHIGHAT F. TiO2 photocatalyst for removal of volatile organic compounds in gas phase: a review[J]. Chemical Engineering Journal, 2018, 334: 2408-2439. [12] CHENG Y, HE H J, YANG C P, et al. Challenges and solutions for biofiltration of hydrophobic volatile organic compounds[J]. Biotechnology Advances, 2016, 34(6): 1091-1102. [13] VEERAPANDIAN S K P, DE GEYTER N, GIRAUDON J M, et al. The use of zeolites for VOCs abatement by combining non-thermal plasma, adsorption, and/or catalysis: a review[J]. Catalysts, 2019, 9(1): 98. [14] JIANG Y W, ZHANG L, XIE Y Q, et al. Enhanced catalytic activity in propene oxidation over NaZSM-5 zeolite-supported Pt nanoparticles by increasing the zeolite Si/Al ratio[J]. Catalysis Today, 2020, 355: 476-481. [15] DEROUANE E, VÉDRINE J, PINTO R R, et al. The acidity of zeolites: concepts, measurements and relation to catalysis: a review on experimental and theoretical methods for the study of zeolite acidity[J]. Catalysis Reviews, 2013, 55(4): 454-515. [16] LE T T, CHAWLA A, RIMER J D. Impact of acid site speciation and spatial gradients on zeolite catalysis[J]. Journal of Catalysis, 2020, 391: 56-68. [17] PALČIĆ A, VALTCHEV V. Analysis and control of acid sites in zeolites[J]. Applied Catalysis A: General, 2020, 606: 117795. [18] KHIVANTSEV K, JAEGERS N R, KOVARIK L, et al. On the nature of extra-framework aluminum species and improved catalytic properties in steamed zeolites[J]. Molecules, 2022, 27(7): 2352. [19] AKIYAMA T, MORI K. Stronger Brønsted acids: recent progress[J]. Chemical Reviews, 2015, 115(17): 9277-9306. [20] HONG M, CHEN J W, CHEN E Y X. Polymerization of polar monomers mediated by main-group lewis acid-base pairs[J]. Chemical Reviews, 2018, 118(20): 10551-10616. [21] LI G C, YOSKAMTORN T, CHEN W, et al. Thermal alteration in adsorption sites over SAPO-34 zeolite[J]. Angewandte Chemie International Edition, 2022, 61(27): e202204500. [22] LI G N, PIDKO E A. The nature and catalytic function of cation sites in zeolites: a computational perspective[J]. ChemCatChem, 2019, 11(1): 134-156. [23] GIL B, ZONES S I, HWANG S J, et al. Acidic properties of SSZ-33 and SSZ-35 novel zeolites: a complex infrared and MAS NMR study[J]. The Journal of Physical Chemistry C, 2008, 112(8): 2997-3007. [24] YU Z W, ZHENG A M, WANG Q, et al. Insights into the dealumination of zeolite HY revealed by sensitivity-enhanced 27Al DQ-MAS NMR spectroscopy at high field[J]. Angewandte Chemie International Edition, 2010, 49(46): 8657-8661. [25] QIU L M, FU Y, ZHENG J Y, et al. Investigation on the cation location, structure and performances of rare earth-exchanged Y zeolite[J]. Journal of Rare Earths, 2017, 35(7): 658-666. [26] ZHANG T J, CHEN Z Y, WALSH A G, et al. Single-atom catalysts supported by crystalline porous materials: views from the inside[J]. Advanced Materials, 2020, 32(44): 2002910. [27] BICKEL E E, NIMLOS C T, GOUNDER R. Developing quantitative synthesis-structure-function relations for framework aluminum arrangement effects in zeolite acid catalysis[J]. Journal of Catalysis, 2021, 399: 75-85. [28] VALDÉS H, RIQUELME A L, SOLAR V A, et al. Removal of chlorinated volatile organic compounds onto natural and Cu-modified zeolite: the role of chemical surface characteristics in the adsorption mechanism[J]. Separation and Purification Technology, 2021, 258: 118080. [29] BEUTEL T W, WILLARD A M, LEE C, et al. Probing external Brønsted acid sites in large pore zeolites with infrared spectroscopy of adsorbed 2, 4, 6-tri-tert-butylpyridine[J]. The Journal of Physical Chemistry C, 2021, 125(16): 8518-8532. [30] RYO W, NATSU O, SUCHADA S, et al. Effect of Ga substitution with Al in ZSM-5 zeolite in methanethiol-to-hydrocarbon conversion[J]. RSC Advances, 2023, 13(31): 21441-21447. [31] YAN X, ZHANG J X, WANG T L, et al. Seed-assisted interzeolite conversion strategy for fabricating lewis acid Sn-CHA zeolites[J]. Inorganic Chemistry, 2023, 62(29): 11633-11644. [32] KVANDE K, MAWANGA M, PRODINGER S, et al. Microcalorimetry on Cu-MCM-22 reveals structure-activity relationships for the methane-to-methanol reaction[J]. Industrial & Engineering Chemistry Research, 2023, 62(28): 10939-10950. [33] GENG Y Y, LANG M, LI G T, et al. Hydrodeoxygenation of vanillin over Ni2P/zeolite catalysts: role of surface acid density[J]. Catalysis Letters, 2023, 153(3): 911-920. [34] PERON D V, ZHOLOBENKO V L, DE MELO J H S, et al. External surface phenomena in dealumination and desilication of large single crystals of ZSM-5 zeolite synthesized from a sustainable source[J]. Microporous and Mesoporous Materials, 2019, 286: 57-64. [35] PARK G, KANG J, PARK S J, et al. Effect of acid modification of ZSM-5 catalyst on performance and coke formation for methanol-to-hydrocarbon reaction[J]. Molecular Catalysis, 2022, 531: 112702. [36] LU S C, HAN R, WANG H, et al. Three birds with one stone: designing a novel binder-free monolithic zeolite pellet for wet VOC gas adsorption[J]. Chemical Engineering Journal, 2022, 448: 137629. [37] SRIVASTAVA R, IWASA N, FUJITA S I, et al. Dealumination of zeolite beta catalyst under controlled conditions for enhancing its activity in acylation and esterification[J]. Catalysis Letters, 2009, 130(3): 655-663. [38] BABIĆ V, KONETI S, MOLDOVAN S, et al. Chromic acid dealumination of zeolites[J]. Microporous and Mesoporous Materials, 2022, 329: 111513. [39] JAMIL A K, MURAZA O, AHMED M H, et al. Hydrothermally stable acid-modified ZSM-22 zeolite for selective propylene production via steam-assisted catalytic cracking of n-hexane[J]. Microporous and Mesoporous Materials, 2018, 260: 30-39. [40] QIN Z X, MELINTE G, GILSON J P, et al. The mosaic structure of zeolite crystals[J]. Angewandte Chemie International Edition, 2016, 55(48): 15049-15052. [41] QIN Z X, PINARD L, BENGHALEM M A, et al. Preparation of single-crystal “house-of-cards”-like ZSM-5 and their performance in ethanol-to-hydrocarbon conversion[J]. Chemistry of Materials, 2019, 31(13): 4639-4648. [42] ZHANG N, MAO D S, ZHAI X L. Selective conversion of bio-ethanol to propene over nano-HZSM-5 zeolite: remarkably enhanced catalytic performance by fluorine modification[J]. Fuel Processing Technology, 2017, 167: 50-60. [43] ZHANG L M, GONG Y J, ZHAI Y L, et al. Creation of CuOx/ZSM-5 zeolite complex: healing defect sites and boosting acidic stability and catalytic activity[J]. Catalysis Science & Technology, 2020, 10(15): 4981-4989. [44] XIE Z K, BAO J Q, YANG Y Q, et al. Effect of treatment with NaAlO2 solution on the surface acid properties of zeolite Β[J]. Journal of Catalysis, 2002, 205(1): 58-66. [45] KUNITAKE Y, YOSHIOKA M, KONDO J N, et al. Development of AEI-type boroaluminosilicate zeolites, and their acidic and catalytic properties in ethene conversion reaction[J]. Applied Catalysis A: General, 2018, 568: 123-129. [46] LIU R S, FAN B H, ZHANG W N, et al. Inside cover: increasing the number of aluminum atoms in T3 sites of a mordenite zeolite by low-pressure SiCl4 treatment to catalyze dimethyl ether carbonylation[J]. Angewandte Chemie International Edition, 2022, 61(18): e202204179. [47] MAHONEY L, EMDADI L, LEFF A C, et al. Influences of metal-modification and lamellar zeolite structure on ethylene to liquid aromatics conversion reaction using MFI catalysts[J]. Fuel, 2019, 256: 115953. [48] ZHUO Y X, ZHU L J, LIANG J C, et al. Selective Fischer-Tropsch synthesis for gasoline production over Y, Ce, or La-modified Co/H-β[J]. Fuel, 2020, 262: 116490. [49] ROSTAMIZADEH M, TAEB A. Highly selective Me-ZSM-5 catalyst for methanol to propylene (MTP)[J]. Journal of Industrial and Engineering Chemistry, 2015, 27: 297-306. [50] ROSTAMIZADEH M, YARIPOUR F. Bifunctional and bimetallic Fe/ZSM-5 nanocatalysts for methanol to olefin reaction[J]. Fuel, 2016, 181: 537-546. [51] ROSTAMIZADEH M, YARIPOUR F, HAZRATI H. Ni-doped high silica HZSM-5 zeolite (Si/Al=200) nanocatalyst for the selective production of olefins from methanol[J]. Journal of Analytical and Applied Pyrolysis, 2018, 132: 1-10. [52] AZZOLINA JURY F, POLAERT I, ESTEL L, et al. Synthesis and characterization of MEL and FAU zeolites doped with transition metals for their application to the fine chemistry under microwave irradiation[J]. Applied Catalysis A: General, 2013, 453: 92-101. [53] JUNG H, LEE H, LIM Y H, et al. Promotional effect of Co cations on the catalytic activity of Co/ZSM-5 in 1, 2-dichloroethane dehydrochlorination for the production of vinyl chloride monomer[J]. Applied Catalysis A: General, 2023, 659: 119183. [54] TAGHAVI S, GHEDINI E, MENEGAZZO F, et al. Balanced acidity by microwave-assisted ion-exchange of ZSM-5 zeolite as a catalyst for transformation of glucose to levulinic acid[J]. Biomass Conversion and Biorefinery, 2022: 1-19. [55] ZHANG W, SHEN Z, KONG L, et al. Sn doping on partially dealuminated Beta zeolite by solid state ion exchange for 5-hydroxymethylfurfural (5-HMF) production from glucose[J]. Journal of Chemical Technology & Biotechnology, 2023, 98(3): 773-781. [56] SREE S P, DENDOOVEN J, KORÁNYI T I, et al. Aluminium atomic layer deposition applied to mesoporous zeolites for acid catalytic activity enhancement[J]. Catalysis Science & Technology, 2011, 1(2): 218-221. [57] VERHEYEN E, SREE S P, THOMAS K, et al. Catalytic activation of OKO zeolite with intersecting pores of 10- and 12-membered rings using atomic layer deposition of aluminium[J]. Chemical Communications, 2014, 50(35): 4610-4612. [58] WANG F, XIAO W Y, XIAO G M. Atomic layer deposition of zinc oxide on HZSM-5 template and its methanol aromatization performance[J]. Catalysis Letters, 2015, 145(3): 860-867. [59] SHAO Q, YANG M Y, LI A M, et al. Enhanced catalytic ozonation of toluene using supported MnOx/USY via regulating the distribution of aluminum species in USY by dealumination[J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108604. [60] VALDÉS H, SOLAR V A, CABRERA E H, et al. Control of released volatile organic compounds from industrial facilities using natural and acid-treated mordenites: the role of acidic surface sites on the adsorption mechanism[J]. Chemical Engineering Journal, 2014, 244: 117-127. [61] BEAUCHET R, MAGNOUX P, MIJOIN J. Catalytic oxidation of volatile organic compounds (VOCs) mixture (isopropanol/o-xylene) on zeolite catalysts[J]. Catalysis Today, 2007, 124(3/4): 118-123. [62] YANG H L, MA C Y, WANG G, et al. Fluorine-enhanced Pt/ZSM-5 catalysts for low-temperature oxidation of ethylene[J]. Catalysis Science & Technology, 2018, 8(7): 1988-1996. [63] ZHAO W, RUAN S S, QIAN S Y, et al. Abatement of n-butane by catalytic combustion over co-ZSM-5 catalysts[J]. Energy & Fuels, 2020, 34(10): 12880-12890. [64] LU J C, TIAN R, ZHANG W J, et al. An ultra-long stability of lanthanum (La) modified molecular sieve for catalytic degradation of typical sulfur-containing VOCs in a near-real environment[J]. Applied Catalysis B: Environmental, 2023, 339: 123114. [65] LI J H, XIAO G F, GUO Z Y, et al. ZSM-5-supported V-Cu bimetallic oxide catalyst for remarkable catalytic oxidation of toluene in coal-fired flue gas[J]. Chemical Engineering Journal, 2021, 419: 129675. [66] YANG L Z, LIU Q L, HAN R, et al. Confinement and synergy effect of bimetallic Pt-Mn nanoparticles encapsulated in ZSM-5 zeolite with superior performance for acetone catalytic oxidation[J]. Applied Catalysis B: Environmental, 2022, 309: 121224. [67] MIKHAILOV M N, KAZANSKY V B, KUSTOV L M. Intensities of IR stretching bands as a criterion of the strength of Lewis acid sites in ZSM-5 zeolites with bivalent cations[J]. Catalysis Letters, 2007, 116(1): 81-86. [68] WANG S, LI Z K, QIN Z F, et al. Catalytic roles of the acid sites in different pore channels of H-ZSM-5 zeolite for methanol-to-olefins conversion[J]. Chinese Journal of Catalysis, 2021, 42(7): 1126-1136. [69] DAI W J, ZHANG L N, LIU R Z, et al. Plate-like ZSM-5 zeolites as robust catalysts for the cracking of hydrocarbons[J]. ACS Applied Materials & Interfaces, 2022, 14(9): 11415-11424. [70] KADJA G T M, AZHARI N J, MARDIANA S, et al. Recent advances in the development of nanosheet zeolites as heterogeneous catalysts[J]. Results in Engineering, 2023, 17: 100910. [71] IADRAT P, WATTANAKIT C. Bioethanol upgrading to renewable monomers using hierarchical zeolites: catalyst preparation, characterization, and catalytic studies[J]. Catalysts, 2021, 11(10): 1162. [72] TIAN J, WANG C H, WU J W, et al. Enhancing water resistance of Pt nanoparticles by tailoring microenvironment of hollow ZSM-5 for efficient benzene oxidation[J]. Chemical Engineering Journal, 2023, 451: 138351. [73] EL KHAWAJA R, SONAR S, BARAKAT T, et al. VOCs catalytic removal over hierarchical porous zeolite NaY supporting Pt or Pd nanoparticles[J]. Catalysis Today, 2022, 405/406: 212-220. [74] XIA K, HUANG J H, YE L P. Super stability of Cu-Mn/Y bimetallic catalyst for ozone-assisted catalytic oxidation of toluene[J]. Water, Air, & Soil Pollution, 2022, 233(8): 1-14. [75] ROMERO D, CHLALA D, LABAKI M, et al. Removal of toluene over NaX zeolite exchanged with Cu2+[J]. Catalysts, 2015, 5(3): 1479-1497. [76] CHEN C Y, CHEN F, ZHANG L, et al. Importance of platinum particle size for complete oxidation of toluene over Pt/ZSM-5 catalysts[J]. Chemical Communications, 2015, 51(27): 5936-5938. [77] CHEN C Y, WANG X, ZHANG J, et al. Superior performance in catalytic combustion of toluene over KZSM-5 zeolite supported platinum catalyst[J]. Catalysis Letters, 2014, 144(11): 1851-1859. [78] ROKICIŃSKA A, MAJERSKA P, DROZDEK M, et al. Impact of Mn addition on catalytic performance of Cu/SiBEA materials in total oxidation of aromatic volatile organic compounds[J]. Applied Surface Science, 2021, 546: 149148. [79] SUN P F, CHEN J K, ZAI S Y, et al. Regeneration mechanism of a deactivated zeolite-supported catalyst for the combustion of chlorinated volatile organic compounds[J]. Catalysis Science & Technology, 2021, 11(3): 923-933. [80] JABĿOŃSKA M, KRÓL A, KUKULSKA-ZAJɠC E, et al. Zeolites Y modified with palladium as effective catalysts for low-temperature methanol incineration[J]. Applied Catalysis B: Environmental, 2015, 166/167: 353-365. [81] ZHANG L, HE D D, LU J C, et al. Catalytic properties and nature of active centers of Cr/MCM-41 in catalytic abatement of sulfur-containing VOC of methanethiol[J]. Environmental Technology & Innovation, 2021, 24: 101975. [82] PARK S J, BAE I, NAM I S, et al. Oxidation of formaldehyde over Pd/beta catalyst[J]. Chemical Engineering Journal, 2012, 195/196: 392-402. [83] LI Y J, ARMOR J N. Catalytic combustion of methane over palladium exchanged zeolites[J]. Applied Catalysis B: Environmental, 1994, 3(4): 275-282. [84] PINARD L, MIJOIN J, AYRAULT P, et al. On the mechanism of the catalytic destruction of dichloromethane over Pt zeolite catalysts[J]. Applied Catalysis B: Environmental, 2004, 51(1): 1-8. [85] BLANCH-RAGA N, PALOMARES A E, MARTÍNEZ-TRIGUERO J, et al. Cu and Co modified beta zeolite catalysts for the trichloroethylene oxidation[J]. Applied Catalysis B: Environmental, 2016, 187: 90-97. [86] NGUYEN N T, NGUYEN T M P, CAPARANGA A R, et al. Specifically designed metal functional group doped hydrophobic zeolite for acetone removal with low temperature catalytic reaction[J]. Catalysis Letters, 2023, 153(11): 3492-3503. [87] XING X, LI N, CHENG J, et al. Synergistic effects of Cu species and acidity of Cu-ZSM-5 on catalytic performance for selective catalytic oxidation of n-butylamine[J]. Journal of Environmental Sciences, 2020, 96: 55-63. |
[1] | 谢修鑫, 廖立兵, 雷馨宇, 王丽娟, 唐晓尉. EDTA-LDH/zeolite制备及其对重金属离子的吸附[J]. 硅酸盐通报, 2024, 43(1): 370-382. |
[2] | 邓永刚, 代婷婷, 孙晨, 杨元全. 沸石微粉对磷酸钾镁水泥水化性能的影响[J]. 硅酸盐通报, 2023, 42(9): 3083-3088. |
[3] | 金星, 傅金祥, 张黎, 何祥. 锰氧化膜包覆沸石的制备及其处理含锰水特性研究[J]. 硅酸盐通报, 2023, 42(9): 3295-3305. |
[4] | 袁仲纯, 李佳, 姚梦琴, 刘飞, 马俊, 耿硕. 多晶型MnO2改善富锂锰基正极材料的电化学性能[J]. 硅酸盐通报, 2023, 42(9): 3387-3394. |
[5] | 张红智, 张燕挺, 宋金锐, 刘景怡, 高玉芳, 李宁, 李晓峰. 晶种溶液辅助合成ZSM-5沸石及偏三甲苯异构化催化性能研究[J]. 硅酸盐通报, 2023, 42(7): 2563-2578. |
[6] | 王宁, 陈宇昕, 徐文盛, 安胜利, 彭军, 彭继华. 氨氮废水处理用新型沸石化陶粒的制备[J]. 硅酸盐通报, 2023, 42(5): 1864-1874. |
[7] | 杨露婷, 刘勇. ZSM-5沸石的合成、再生及其对废水中有机物的吸附研究[J]. 硅酸盐通报, 2023, 42(12): 4552-4558. |
[8] | 罗仁, 芦雨薇, 许源, 樊晋源, 刘怀, 段平. 改性5A沸石对偏高岭土地聚物微观结构及抗泛碱性能的影响[J]. 硅酸盐通报, 2023, 42(10): 3633-3642. |
[9] | 王鑫, 韦明, 刘琨. 球霰石型碳酸钙的调控制备研究进展[J]. 硅酸盐通报, 2022, 41(8): 2860-2870. |
[10] | 石勤, 刘珂, 后王新, 陈智博, 窦勐星, 王海燕, 杨恒辉. 沸石基缓释肥料的研究进展[J]. 硅酸盐通报, 2022, 41(6): 2181-2190. |
[11] | 刘文静, 单江博, 廖宁, 李亚伟, 潘丽萍, 戴亚洁, 朱天彬. 不同温度下合成沸石对铝酸钙水泥水化行为的影响[J]. 硅酸盐通报, 2022, 41(5): 1510-1521. |
[12] | 孙美娟, 姚丕强, 黄雄, 余睿, 水中和, 蒋春园, 范定强. 沸石对海水拌合超高性能混凝土性能的影响[J]. 硅酸盐通报, 2022, 41(5): 1649-1655. |
[13] | 朱思雨, 李丽, 刘泽, 张彤, 韩凤兰, 马真非, 刘佳钰. 硅锰渣复合粉煤灰水热合成NaA沸石及其表征[J]. 硅酸盐通报, 2022, 41(2): 634-639. |
[14] | 程福星, 张珍杰, 周月霞, 辜振睿, 向飞, 王海龙, 纪宪坤. 水化热调控剂与氧化镁复掺对混凝土抗裂行为的影响[J]. 硅酸盐通报, 2022, 41(12): 4273-4281. |
[15] | 王信刚, 陈涛, 赵华, 李玉洁. 二乙醇单异丙醇胺-三异丙醇胺激发沸石粉后期活性机理研究[J]. 硅酸盐通报, 2021, 40(9): 2891-2897. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||