[1] 王 勇, 张 闪, 董 莹, 等. 水体中邻苯二酚和对苯二酚检测方法的研究进展[J]. 化学研究, 2015, 26(1): 100-104. WANG Y, ZHANG S, DONG Y, et al. Research progress of methods for detecting catechol and hydroquinone in water[J]. Chemical Research, 2015, 26(1): 100-104 (in Chinese). [2] GAO W H, LEGIDO-QUIGLEY C. Fast and sensitive high performance liquid chromatography analysis of cosmetic creams for hydroquinone, phenol and six preservatives[J]. Journal of Chromatography A, 2011, 1218(28): 4307-4311. [3] ALQARNI M H, ALAM P, SHAKEEL F, et al. Highly sensitive and ecologically sustainable reversed-phase HPTLC method for the determination of hydroquinone in commercial whitening creams[J]. Processes, 2021, 9(9): 1631. [4] 侯 博, 张万智, 韩永辉, 等. 水体中酚类化合物测定方法的研究进展[J]. 化学试剂, 2019, 41(8): 802-806. HOU B, ZHANG W Z, HAN Y H, et al. Advances in the determination of phenolic compounds in water[J]. Chemical Reagents, 2019, 41(8): 802-806 (in Chinese). [5] 石志敏. 流动注射化学发光法测定环境水中有机污染物的研究[D]. 新乡: 河南师范大学, 2012. SHI Z M. Determination of organic pollutants in water with flow-injection chemiluminescence detection[D]. Xinxiang: Henan Normal University, 2012 (in Chinese). [6] FAN L F, WU X Q, GUO M D, et al. Cobalt hydroxide film deposited on glassy carbon electrode for electrocatalytic oxidation of hydroquinone[J]. Electrochimica Acta, 2007, 52(11): 3654-3659. [7] PENG Y, TANG Z R, DONG Y P, et al. Electrochemical detection of hydroquinone based on MoS2/reduced graphene oxide nanocomposites[J]. Journal of Electroanalytical Chemistry, 2018, 816: 38-44. [8] JIANG H M, WANG S Q, DENG W F, et al. Graphene-like carbon nanosheets as a new electrode material for electrochemical determination of hydroquinone and catechol[J]. Talanta, 2017, 164: 300-306. [9] HU C X, ZHANG W, ZHENG Z F, et al. Facile preparation of silver nanoparticle decorated RGO nanostructures with enhanced simultaneous detection property for hydroquinone and catechol[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2023, 31(4): 349-356. [10] KHAND N H, PALABIYIK I M, BULEDI J A, et al. Functional Co3O4 nanostructure-based electrochemical sensor for direct determination of ascorbic acid in pharmaceutical samples[J]. Journal of Nanostructure in Chemistry, 2021, 11(3): 1-14. [11] DE CARVALHO R M, MELLO C, KUBOTA L T. Simultaneous determination of phenol isomers in binary mixtures by differential pulse voltammetry using carbon fibre electrode and neural network with pruning as a multivariate calibration tool[J]. Analytica Chimica Acta, 2000, 420(1): 109-121. [12] MANJUNATHA J G. Poly (adenine) modified graphene-based voltammetric sensor for the electrochemical determination of catechol, hydroquinone and resorcinol[J]. The Open Chemical Engineering Journal, 2020, 14: 52-62. [13] 霍燕燕, 雪 瑶, 武江艳, 等. 基于纳米铂修饰电极的电化学法测定对苯二酚[J]. 分析试验室, 2020, 39(10): 1199-1202. HUO Y Y, XUE Y, WU J Y, et al. Electrochemical determination of hydroquinone based on nanoplatinum modified electrode[J]. Chinese Journal of Analysis Laboratory, 2020, 39(10): 1199-1202 (in Chinese). [14] LU Z Y, WANG Y E, ZHU Y M, et al. Popcorn-derived porous carbon based electrochemical sensor for simultaneous determination of hydroquinone, catechol and nitrite[J]. ChemistrySelect, 2022, 7(24): 2-10. [15] 刘建波, 苏 伟, 刘 静, 等. 基于碳纳米管的对苯二酚电化学传感器的构置与应用[J]. 化学研究与应用, 2022, 34(4): 764-769. LIU J B, SU W, LIU J, et al. Configuration and application of hydroquinone electrochemical sensor based on carbon nanotubes[J]. Chemical Research and Application, 2022, 34(4): 764-769 (in Chinese). [16] HARSHITHA B T, MANJUNATHA J G, PUSHPANJALI P A, et al. Efficient electrochemical determination of catechol with hydroquinone at poly (L-serine) layered carbon paste electrode[J]. Chemistry Select, 2021, 6(26): 6764-6772. [17] AKINOGLU E M, KTELHÖN E, PAMPEL J, et al. Nanoscopic carbon electrodes: structure, electrical properties and application for electrochemistry[J]. Carbon, 2018, 130: 768-774. [18] CAO Z Y, SU B. Light enhanced electrochemistry and electrochemiluminescence of luminol at glassy carbon electrodes[J]. Electrochemistry Communications, 2019, 98: 47-52. [19] ALIM S, VEJAYAN J, YUSOFF M M, et al. Recent uses of carbon nanotubes & gold nanoparticles in electrochemistry with application in biosensing: a review[J]. Biosensors and Bioelectronics, 2018, 121: 125-136. [20] 吴 丽, 吴 限, 张宇佳, 等. 氧化锌/氧化镁纳米复合材料的制备及其光催化性能研究[J]. 化工新型材料, 2021, 49(2): 191-194. WU L, WU X, ZHANG Y J, et al. Preparation and photocatalytic property of ZnO/MgO nanocomposite[J]. New Chemical Materials, 2021, 49(2): 191-194 (in Chinese). [21] ALLWAR A, SETYANI A, SUGESTI U, et al. Physical-chemical characterization of nano-zinc oxide/activated carbon composite for phenol removal from aqueous solution[J]. Bulletin of Chemical Reaction Engineering & Catalysis, 2021, 16(1): 136-147. [22] HAO J X, JI L D, WU K B, et al. Electrochemistry of ZnO@reduced graphene oxides[J]. Carbon, 2018, 130: 480-486. [23] MIAO F J, WU W Y, MIAO R, et al. Graphene/nano-ZnO hybrid materials modify Ni-foam for high-performance electrochemical glucose sensors[J]. Ionics, 2018, 24(12): 4005-4014. [24] 崔 虹, 陈 星, 刘宝林. 基于氧化锌@金纳米复合材料/玻碳电极电化学传感器检测双酚A[J]. 食品安全质量检测学报, 2022, 13(10): 3237-3242. CUI H, CHEN X, LIU B L. Detection of bisphenol A based on zinc oxide@gold nanocomposites/glassy carbon electrode electrochemical sensor[J]. Journal of Food Safety & Quality, 2022, 13(10): 3237-3242 (in Chinese). [25] 王朝琳, 魏友利, 李 薇, 等. 基于氧化锌/碳纳米纤维材料的氧氟沙星电化学传感器的构建及应用[J]. 分析试验室, 2022, 41(2): 171-174. WANG C L, WEI Y L, LI W, et al. Construction and application of electrochemical sensor for ofloxacin detection based on zinc oxide/carbon nanofiber[J]. Chinese Journal of Analysis Laboratory, 2022, 41(2): 171-174 (in Chinese). [26] 王海辉. 氧化锌纳米阵列电化学传感器的构建及应用[D]. 开封: 河南大学, 2017. WANG H H. Construction and application of electrochemical sensor based on ZnO arrays[D]. Kaifeng: Henan University, 2017 (in Chinese). [27] 刘志敏, 胡乐乾, 沈国励, 等. 基于ZnO溶胶-凝胶固定的酪氨酸酶传感器的研制[J]. 分析科学学报, 2007, 23(5): 555-558. LIU Z M, HU L Q, SHEN G L, et al. A tyrosinase biosensor based on ZnO sol-gel matrix[J]. Journal of Analytical Science, 2007, 23(5): 555-558 (in Chinese). [28] 田振华, 王 颖, 何静瑄. 羧甲基纤维素钠改性球状纳米氧化锌的制备及其结构与性能[J]. 陕西科技大学学报, 2022, 40(3): 1-6+51. TIAN Z H, WANG Y, HE J X. Preparation, characterization and properties of ZnO nanoparticles modified by sodium carboxymethyl cellulose[J]. Journal of Shaanxi University of Science & Technology, 2022, 40(3): 1-6+51 (in Chinese). [29] 付家鹏, 罗 磊, 陈 克, 等. 氧化锌纳米纤维的制备、表征及电化学性能研究[J]. 电源技术, 2015, 39(4): 749-752. FU J P, LUO L, CHEN K, et al. Preparation, characterization and electrochemical properties of ZnO nanofibers[J]. Chinese Journal of Power Sources, 2015, 39(4): 749-752 (in Chinese). [30] 李焕同, 曹代勇, 张卫国, 等. 高煤级煤石墨化轨迹阶段性的XRD和Raman光谱表征[J]. 光谱学与光谱分析, 2021, 41(8): 2491-2498. LI H T, CAO D Y, ZHANG W G, et al. XRD and Raman spectroscopy characterization of graphitization trajectories of high-rank coal[J]. Spectroscopy and Spectral Analysis, 2021, 41(8): 2491-2498 (in Chinese). [31] 庄全超, 许金梅, 田景华, 等. 石墨负极电化学扫描循环过程的EIS、Raman光谱和XRD研究[J]. 高等学校化学学报, 2008, 29(5): 973-976. ZHUANG Q C, XU J M, TIAN J H, et al. Studies on graphite anode during electrochemical scan cycles by EIS, Raman spectroscopy and XRD[J]. Chemical Journal of Chinese Universities, 2008, 29(5): 973-976 (in Chinese). [32] ROYCHOUDHURY A, BASU S, JHA S K. Dopamine biosensor based on surface functionalized nanostructured nickel oxide platform[J]. Biosensors and Bioelectronics, 2016, 84: 72-81. [33] LAVIRON E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1979, 101(1): 19-28. [34] 孙志远, 樊文芳, 王 勇, 等. 基于聚中性红/多壁碳纳米管复合材料的比率型电化学传感器检测雌三醇[J]. 分析化学, 2023, 51(1): 42-52. SUN Z Y, FAN W F, WANG Y, et al. Poly(neutral red)/multi-walled carbon nanotube composite modified electrochemical sensor for ratiometric detection of estriol[J]. Chinese Journal of Analytical Chemistry, 2023, 51(1): 42-52 (in Chinese). [35] ZHANG Y, WANG L T, LU D B, et al. Sensitive determination of bisphenol A base on arginine functionalized nanocomposite graphene film[J]. Electrochimica Acta, 2012, 80: 77-83. [36] DE OLIVEIRA I R W Z, VIEIRA I C. Immobilization procedures for the development of a biosensor for determination of hydroquinone using chitosan and gilo (Solanum gilo)[J]. Enzyme and Microbial Technology, 2006, 38(3/4): 449-456. [37] DE OLIVEIRA I R W Z, DE BARROS OSÓRIO R E H M, NEVES A, et al. Biomimetic sensor based on a novel copper complex for the determination of hydroquinone in cosmetics[J]. Sensors and Actuators B: Chemical, 2007, 122(1): 89-94. [38] YAO Y Z, LIU Y C, YANG Z S. A novel electrochemical sensor based on a glassy carbon electrode modified with Cu-MWCNT nanocomposites for determination of hydroquinone[J]. Analytical Methods, 2016, 8(12): 2568-2575. |