[1] 国务院. 国务院关于落实科学发展观加强环境保护的决定[J]. 环境科学文摘, 2006(2): 98-105. The State Council. The state council's decision on strengthening environmental protection in scientific outlook on development[J]. Abstracts of Environmental Sciences, 2006(2): 98-105 (in Chinese). [2] UDUMA R C, OGUZIE K L, CHIJIOKE C F, et al. Bioelectrochemical technologies for simultaneous treatment of dye wastewater and electricity generation: a review[J]. International Journal of Environmental Science and Technology, 2023: 1-20. [3] WANG Z W, TAN Y N, DUAN X G, et al. Pretreatment of membrane dye wastewater by CoFe-LDH-activated peroxymonosulfate: performance, degradation pathway, and mechanism[J]. Chemosphere, 2023, 313: 137346. [4] 石现兵, 王 涛, 吕明泽, 等. 树枝状PVDF纳米纤维膜负载TiO2吸附-光催化降解染料废水[J]. 材料导报, 2023, 37(4): 56-61. SHI X B, WANG T, LV M Z, et al. Dendritic PVDF nanofiber membranes loaded with TiO2 for adsorption-photocatalytic degradation of dye wastewater[J]. Materials Reports, 2023, 37(4): 56-61 (in Chinese). [5] WANG W J, ZENG Z T, ZENG G M, et al. Sulfur doped carbon quantum dots loaded hollow tubular g-C3N4 as novel photocatalyst for destruction of Escherichia coli and tetracycline degradation under visible light[J]. Chemical Engineering Journal, 2019, 378: 122132. [6] HALLING-SØRENSEN B, SENGELØV G, TJØRNELUND J. Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria[J]. Archives of Environmental Contamination and Toxicology, 2002, 42(3): 263-271. [7] TANG S F, ZHAO M Z, YUAN D L, et al. Fe3O4 nanoparticles three-dimensional electro-peroxydisulfate for improving tetracycline degradation[J]. Chemosphere, 2021, 268: 129315. [8] BEN AYED S, MANSOUR L, VAIANO V, et al. Magnetic Fe3O4-natural iron ore/calcium alginate beads as heterogeneous catalyst for Novacron blue dye degradation in water by (photo)Fenton process[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 438: 114566. [9] 谢金伶, 蒲佳兴, 李思域, 等. 钴锰硫化物活化过硫酸盐强化降解盐酸四环素[J]. 中国环境科学, 2023, 43(2): 544-551. XIE J L, PU J X, LI S Y, et al. Enhanced degradation of tetracycline hydrochloride by cobalt-manganese sulfide activated peroxymonosulfate[J]. China Environmental Science, 2023, 43(2): 544-551 (in Chinese). [10] 吴健博, 石 亮, 郑小强, 等. g-C3N4/BiOCl复合光催化剂作为2D/2D异质结用于光催化降解染料性能研究[J]. 复合材料学报, 2023, 40(1): 323-333. WU J B, SHI L, ZHENG X Q, et al. g-C3N4/BiOCl composite photocatalyst used as 2D/2D heterojunction for photocatalytic degradation of dyes[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 323-333 (in Chinese). [11] HUANG H W, HE Y, LI X W, et al. Bi2O2(OH)(NO3) as a desirable[Bi2O2]2+layered photocatalyst: strong intrinsic polarity, rational band structure and {001} active facets co-beneficial for robust photooxidation capability[J]. Journal of Materials Chemistry A, 2015, 3(48): 24547-24556. [12] 余家国, 宫建茹, 向全军. “光催化产氢和CO2还原专刊” 前言[J]. 催化学报, 2020, 41(1): 1. YU J G, GONG J R, XIANG Q J. Preface to “Special Issue on Photocatalytic Hydrogen Production and CO2 Reduction”[J]. Journal of Catalysis, 2020, 41(1): 1 (in Chinese). [13] LIU X M, XU J X, ZHANG H Y, et al. Microwave-assisted synthesis of octahedral Rh nanocrystals and their performance for electrocatalytic oxidation of formic acid[J]. RSC Advances, 2023, 13(3): 1751-1756. [14] HASLINA H, HAFIZ N, SYAMIM R. Emerging pollutant of concern: pharmaceutical compounds in Asia preference to Southeast Asia countries occurrence of with particular[C]. MATEC Web Conferences, 2016: 1-6. [15] 黄 欣, 高晓蕾, 樊叶萍, 等. 氧化锌纳米材料制备及其超声协同催化降解染料废水[J]. 浙江师范大学学报(自然科学版), 2021, 44(3): 264-269. HUANG X, GAO X L, FAN Y P, et al. Study on preparation of zinc oxide nanomaterials and its ultrasonic synergistic catalytic degradation of dye wastewater[J]. Journal of Zhejiang Normal University (Natural Sciences), 2021, 44(3): 264-269 (in Chinese). [16] 仝海娟, 李思琦, 范方方, 等. 氯氧化铋简便合成及其光催化降解对硝基苯酚性能[J]. 无机盐工业, 2022, 54(9): 157-162. TONG H J, LI S Q, FAN F F, et al. Facile synthesis of bismuth oxychloride and its photocatalytic degradation performance of p-nitrophenol[J]. Inorganic Chemicals Industry, 2022, 54(9): 157-162 (in Chinese). [17] QIAO D S, LI Z H, DUAN J Y, et al. Adsorption and photocatalytic degradation mechanism of magnetic graphene oxide/ZnO nanocomposites for tetracycline contaminants[J]. Chemical Engineering Journal, 2020, 400: 125952. [18] YAO Y, MIAO S, LIU S, et al. Synthesis, characterization, and adsorption properties of magnetic Fe3O4 graphene nanocomposite[J]. Chemical Engineering Journal, 2012, 184: 326-332. [19] PENG Y, ZHOU H, WU Y, et al. A new strategy to construct cellulose-chitosan films supporting Ag/Ag2O/ZnO heterostructures for high photocatalytic and antibacterial performance[J]. Journal of Colloid and Interface Science, 2022, 609: 188-199. [20] WANG Q, WANG W, ZHONG L L, et al. Oxygen vacancy-rich 2D/2D BiOCl-g-C3N4 ultrathin heterostructure nanosheets for enhanced visible-light-driven photocatalytic activity in environmental remediation[J]. Applied Catalysis B: Environmental, 2018, 220: 290-302. [21] SAYADI M H, SOBHANI S, SHEKARI H. Photocatalytic degradation of azithromycin using GO@Fe3O4/ZnO/SnO2 nanocomposites[J]. Journal of Cleaner Production, 2019, 232: 127-136. [22] WANG Z C, XIANG M Q, HUO B J, et al. A novel ZnO/CQDs/PVDF piezoelectric system for efficiently degradation of antibiotics by using water flow energy in pipeline: performance and mechanism[J]. Nano Energy, 2023, 107: 108162. [23] 杨树正, 余路一. 两种形貌纳米ZnO的制备及其光催化性能测试[J]. 安徽化工, 2018, 44(2): 40-42+45. YANG S Z, YU L Y. The preparation of two kinds of nanometer zinc oxide and photocatalytic performance testing[J]. Anhui Chemical Industry, 2018, 44(2): 40-42+45 (in Chinese). [24] ZHANG D D, DAI F Y, ZHANG P, et al. The photodegradation of methylene blue in water with PVDF/GO/ZnO composite membrane[J]. Materials Science and Engineering: C, 2019, 96: 684-692. [25] LIU H, SU Y, CHEN Z, et al. Bi7O9I3/reduced graphene oxide composite as an efficient visible-light-driven photocatalyst for degradation of organic contaminants[J]. Journal of Molecular Catalysis A: Chemical, 2014, 391: 175-182. [26] CHANG J Q, ZHONG Y, HU C H, et al. Study on highly efficient BiOCl/ZnO p-n heterojunction: synthesis, characterization and visible-light-excited photocatalytic activity[J]. Journal of Molecular Structure, 2019, 1183: 209-216. [27] LI J E, JIN Z, CHAO Y, et al. Synthesis of graphene-oxide-decorated porous ZnO nanosheet composites and their gas sensing properties[J]. Chemosensors, 2023, 11(1): 65. [28] LU X Y, YE K H, ZHANG S Q, et al. Amorphous type FeOOH modified defective BiVO4 photoanodes for photoelectrochemical water oxidation[J]. Chemical Engineering Journal, 2022, 428: 131027. [29] 张 平. PVDF/ZNO/GO杂化膜的制备及其对亚甲基蓝去除性能研究[D]. 天津: 天津工业大学, 2017. ZHANG P. Preparation of PVDF/ZNO/GO hybrid membrane and its removal performance for methylene blue[D]. Tianjin: Tianjin Polytechnic University, 2017 (in Chinese). [30] TING L L H, TEOW Y H, MAHMOUDI E, et al. Development and optimization of low surface free energy of rGO-PVDF mixed matrix membrane for membrane distillation[J]. Separation and Purification Technology, 2023, 305: 122428. [31] PARANGUSAN H, BHADRA J, AHMAD Z, et al. Electrospun PVDF/ZnO based composite fibers for oil absorption and photocatalytic degradation of organic dyes from waste water[J]. Fibers and Polymers, 2022, 23(5): 1217-1224. [32] SONG K, CHEN W P, WANG R Q, et al. Synthesis of BiOCl/C/g-C3N4 Z-scheme heterojunction: mercury lamp-driven heterojunction for efficient degradation of phenol[J]. Research on Chemical Intermediates, 2023, 49(4): 1665-1681. [33] LIU J, WANG P L, QU W Q, et al. Nanodiamond-decorated ZnO catalysts with enhanced photocorrosion-resistance for photocatalytic degradation of gaseous toluene[J]. Applied Catalysis B: Environmental, 2019, 257: 117880. [34] FU Q, WANG X, CAI Q, et al. Constructing BiOCl/ZnO heterojunction from Bi-MOF for efficient photocatalytic degradation performance[J] Inorganic Chemistry Communications, 2022: 140: 109445. [35] VANITHA M, KEERTHI, VADIVEL S, et al. Visible light photocatalysis of methylene blue by graphene-based ZnO and Ag/AgCl nanocomposites[J]. Desalination and Water Treatment, 2015, 54(10): 2748-2756. [36] ZHANG X C, ZHAO L J, FAN C M, et al. Effects of oxygen vacancy on the electronic structure and absorption spectra of bismuth oxychloride[J]. Computational Materials Science, 2012, 61: 180-184. [37] ZHANG L, WANG W Z, SUN S M, et al. Water splitting from dye wastewater: a case study of BiOCl/copper(II) phthalocyanine composite photocatalyst[J]. Applied Catalysis B: Environmental, 2013, 132/133: 315-320. [38] PUNEETHA J, KOTTAM N, RATHNA A. Investigation of photocatalytic degradation of crystal violet and its correlation with bandgap in ZnO and ZnO/GO nanohybrid[J]. Inorganic Chemistry Communications, 2021, 125: 108460. [39] DEHGHAN S, JAFARI A J, FARZADKIA M, et al. Visible-light-driven photocatalytic degradation of metalaxyl by reduced graphene oxide/Fe3O4/ZnO ternary nanohybrid: influential factors, mechanism and toxicity bioassay[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 375: 280-292. |