[1] 徐洪敏, 肖丕强, 黄小燕. 光纤通信网络子信道快速动态分配方法[J]. 激光杂志, 2021, 42(11): 128-132. XU H M, XIAO P Q, HUANG X Y. Fast dynamic allocation method of subchannels in optical fiber communication network[J]. Laser Journal, 2021, 42(11): 128-132 (in Chinese). [2] IADICICCO A, NATALE D, DI PALMA P, et al. Strain monitoring of a composite drag strut in aircraft landing gear by fiber Bragg grating sensors[J]. Sensors, 2019, 19(10): 2239. [3] 袁桂梅, 吴美华, 张少飞. 光纤传感技术在油井分布式测温系统中的应用[J]. 中国新通信, 2018, 20(20): 97-102. YUAN G M, WU M H, ZHANG S F. Application of optical fiber sensing technology in oil well distributed temperature measurement system[J]. China New Telecommunications, 2018, 20(20): 97-102 (in Chinese). [4] LIDIYA A E, RAJA R V J, PHAM V D, et al. Detecting hemoglobin content blood glucose using surface plasmon resonance in D-shaped photonic crystal fiber[J]. Optical Fiber Technology, 2019, 50: 132-138. [5] 张 良. 大直径超长预制棒拉丝工艺和光纤性能的研究[D]. 苏州: 苏州大学, 2016. ZHANG L. Study on drawing process and properties of large diameter and ultra long optical fiber preform[D]. Suzhou: Soochow University, 2016 (in Chinese). [6] 俞 亮, 郭浩林, 陆国庆, 等. 耐高温光纤的性能与生产工艺[J]. 光通信技术, 2014, 38(6): 8-11. YU L, GUO H L, LU G Q, et al. Production and performance of heat resistant optical fiber[J]. Optical Communication Technology, 2014, 38(6): 8-11 (in Chinese). [7] KAZUYUKI S, TOMOYUKI H. Heat-resistant optical fiber coated with newly developed UV curable silicone resins[C]//Proc. of the 60th IWCS, 2011: 424-428. [8] 卫云鸽. 石英光纤化学镀镍技术研究[D]. 成都: 电子科技大学, 2000. WEI Y G. Research of electroless Ni-plating technique for quartz optical fiber[D]. Chengdu: University of Electronic Science and Technology of China, 2000 (in Chinese). [9] CHEN D M, DAI X N, TANG Z B. Development of metallized three-directional fibre Bragg grating strain sensor[J]. Journal of Physics: Conference Series, 2020, 1654(1): 012092. [10] 饶春芳. 镍金属化光纤光栅特性研究[D]. 南昌: 南昌大学, 2012. RAO C F. A study of features of optical fiber gratings metallized with nickel[D]. Nanchang: Nanchang University, 2012 (in Chinese). [11] FOX G R, MULLER C A P, SETTER N, et al. Wavelength tunable fiber Bragg grating devices based on sputter deposited resistive and piezoelectric coatings[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1997, 15(3): 1791-1795. [12] LI X C, PRINZ F, SEIM J. Thermal behavior of a metal embedded fiber Bragg grating sensor[J]. Smart Materials and Structures, 2001, 10(4): 575-579. [13] SEKAR R, SHIVANANJU B N, LAKSHMI K P, et al. Dual functional performance of fiber Bragg gratings coated with metals using flash evaporation technique[J]. Optical Fiber Technology, 2012, 18(4): 183-185. [14] DYSHLYUK A V, MITSAI E V, CHEREPAKHIN A B, et al. Surface plasmon resonance in a bent single-mode fiber with a metallized cladding experimental research[J]. Technical Physics Letters, 2017, 43(8): 727-729. [15] 王友军, 邢庆立, 蔡小妹, 等. 金属涂层光纤特性的研究[J]. 中国建材科技, 1992, 1(3): 34-37. WANG Y J, XING Q L, CAI X M, et al. The study of characteristics of oprtical fibers with metal coating[J]. Chin Building Materials Science & Technology, 1992, 1(3): 34-37 (in Chinese). [16] 杨邦朝, 王文生. 薄膜物理与技术[M]. 成都: 电子科技大学出版社, 1994. YANG B C, WANG W S. Thin film physics and technology[M]. Chengdu: University of Electronic Science and Technology Press, 1994 (in Chinese). [17] 庄 园, 周次明, 范 典. 光纤金属涂覆方法研究综述[J]. 激光与光电子学进展, 2022, 59(5): 27-36. ZHUANG Y, ZHOU C M, FAN D. Review of metal-coated methods for optical fiber[J]. Laser & Optoelectronics Progress, 2022, 59(5): 27-36 (in Chinese). [18] LUPI C, FELLI F, BROTZU A, et al. Improving FBG sensor sensitivity at cryogenic temperature by metal coating[J]. IEEE Sensors Journal, 2008, 8(7): 1299-1304. [19] 杨 珂. 金属化光纤光栅抗拉强度及其低温传感特性[D]. 南昌: 南昌大学, 2019. YANG K. Tensile strength and its cryogenic sensing characteristics of the metal coated optic fiber[D]. Nanchang: Nanchang University, 2019 (in Chinese). [20] 袁章福, 柯家骏, 李 晶. 金属及合金的表面张力[M]. 北京: 科学出版社, 2006. YUAN Z F, KE J J, LI J. Surface tension of metals and alloys[M]. Beijing: Science Press, 2006 (in Chinese). [21] BATTEZZATI L, GREER A L. The viscosity of liquid metals and alloys[J]. Acta Metallurgica, 1989, 37(7): 1791-1802. [22] YOUNG T. An essay on the cohesion of fluids[J]. Royal Society of London Philosophical Transactions, 1805, 95: 65-87. [23] EGRY I, LOHÖFER G, SAUERLAND S. Surface tension and viscosity of liquid metals[J]. Journal of Non-Crystalline Solids, 1993, 156/157/158: 830-832. [24] 张东初, 裴旭明. 加工工艺对表面粗糙度及疲劳寿命的影响[J]. 中国机械工程, 2003, 14(16): 1374-1377. ZHANG D C, PEI X M. Effects of machining processes on surface roughness and fatigue life[J]. China Mechanical Engineering, 2003, 14(16): 1374-1377 (in Chinese). [25] AL-QURESHI H A, KLEIN A N, FREDEL M C. Grain size and surface roughness effect on the instability strains in sheet metal stretching[J]. Journal of Materials Processing Technology, 2005, 170(1/2): 204-210. [26] 张伟伟. 锌花的表面特征和大晶粒形成原因的探讨[D]. 广州: 华南理工大学, 2011. ZHANG W W. Study on spangle surface characteristics and the formation mechanism of big grains[D]. Guangzhou: South China University of Technology, 2011 (in Chinese). [27] RONDINELLA V, MATTHEWSON M. Ionic effects on silica optical fiber strength and models for fatigue[J]. Proceedings of SPIE-the International Society for Optical Engineering, 1990, 1366: 77-84. [28] 路 君, 曾小勤, 丁文江. 晶粒度与合金强度关系[J]. 轻金属, 2008(8): 59-64. LU J, ZENG X Q, DING W J. The hall-petch relationship[J]. Light Metals, 2008(8): 59-64 (in Chinese). |