欢迎访问《硅酸盐通报》官方网站,今天是
分享到:

硅酸盐通报 ›› 2023, Vol. 42 ›› Issue (8): 2865-2880.

• 陶瓷 • 上一篇    下一篇

前驱体转化法制备超高温陶瓷粉体研究进展

孙楚函, 王洪磊, 周新贵   

  1. 国防科技大学空天科学学院,新型陶瓷纤维及其复合材料重点实验室,长沙 410073
  • 收稿日期:2023-04-12 修订日期:2023-05-30 发布日期:2023-08-18
  • 通信作者: 王洪磊,博士,副教授。E-mail:honglei.wang@163.com
  • 作者简介:孙楚函(2001—),男,硕士研究生。主要从事超高温陶瓷的研究。E-mail:15104516953@163.com

Research Progress on Ultra-High Temperature Ceramics Powder Prepared by Precursor-Derived Method

SUN Chuhan, WANG Honglei, ZHOU Xingui   

  1. Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
  • Received:2023-04-12 Revised:2023-05-30 Published:2023-08-18

摘要: 超高温陶瓷(UHTC)在航空航天的热防护领域具有重要作用,高质量的UHTC粉体是制备高性能UHTC的重要原料。在制备UHTC粉体的工艺中,前驱体转化法制备的粉体纯度高、粒径小、各组分分布均匀,具有广阔的应用前景。本文根据前驱体合成机理将UHTC前驱体转化法分为金属醇盐配合物合成法、基于格氏反应合成法以及引入支链合成法,综述了近年来通过三种方法制备UHTC粉体的研究进展,分析总结了三种方法的优缺点,指出了UHTC前驱体转化法目前存在的问题以及未来发展方向。

关键词: 前驱体转化法, 超高温陶瓷粉体, 反应机理, 碳热还原, 陶瓷产率, 微观结构

Abstract: Ultra-high temperature ceramics (UHTC) plays an important role in the field of thermal protection in aerospace. High quality UHTC powder is important raw material for the preparation of high performance UHTC. In the process of preparing UHTC powder, the powder prepared by precursor-derived method has high purity, small particle size and uniform distribution of component, so it has broad application prospects. According to the synthesis mechanism of precursor, the precursor-derived methods of UHTC were divided into metal alkoxides complex synthesis method, synthesis based on Grignard reaction method and synthesis by introducing branch chains method. The research progress of preparation of UHTC by three methods in recent years was reviewed. The advantages and disadvantages of three methods were analyzed and summarized. The existing problems and future development direction of the UHTC powder prepared by precursor-derived method were pointed out.

Key words: precursor-derived method, ultra-high temperature ceramics powder, reaction mechanism, carbothermic reduction, ceramic yield, microstructure

中图分类号: