硅酸盐通报 ›› 2023, Vol. 42 ›› Issue (8): 2865-2880.
孙楚函, 王洪磊, 周新贵
收稿日期:
2023-04-12
修订日期:
2023-05-30
发布日期:
2023-08-18
通信作者:
王洪磊,博士,副教授。E-mail:honglei.wang@163.com
作者简介:
孙楚函(2001—),男,硕士研究生。主要从事超高温陶瓷的研究。E-mail:15104516953@163.com
SUN Chuhan, WANG Honglei, ZHOU Xingui
Received:
2023-04-12
Revised:
2023-05-30
Published:
2023-08-18
摘要: 超高温陶瓷(UHTC)在航空航天的热防护领域具有重要作用,高质量的UHTC粉体是制备高性能UHTC的重要原料。在制备UHTC粉体的工艺中,前驱体转化法制备的粉体纯度高、粒径小、各组分分布均匀,具有广阔的应用前景。本文根据前驱体合成机理将UHTC前驱体转化法分为金属醇盐配合物合成法、基于格氏反应合成法以及引入支链合成法,综述了近年来通过三种方法制备UHTC粉体的研究进展,分析总结了三种方法的优缺点,指出了UHTC前驱体转化法目前存在的问题以及未来发展方向。
中图分类号:
孙楚函, 王洪磊, 周新贵. 前驱体转化法制备超高温陶瓷粉体研究进展[J]. 硅酸盐通报, 2023, 42(8): 2865-2880.
SUN Chuhan, WANG Honglei, ZHOU Xingui. Research Progress on Ultra-High Temperature Ceramics Powder Prepared by Precursor-Derived Method[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2865-2880.
[1] 唐绍锋, 张 静. 世界主要空天飞行器研制情况及未来发展趋势[J]. 国际太空, 2017(10): 30-37. TANG S F, ZHANG J. Development status and trend of the world's major aerospace vehicles[J]. Space International, 2017(10): 30-37 (in Chinese). [2] PEREPEZKO J H. Materials science. The hotter the engine, the better[J]. Science, 2009, 326(5956): 1068-1069. [3] PADTURE N P. Advanced structural ceramics in aerospace propulsion[J]. Nature Materials, 2016, 15(8): 804-809. [4] 王长青. 空天飞行技术创新与发展展望[J]. 宇航学报, 2021, 42(7): 807-819. WANG C Q. Technological innovation and development prospect of aerospace vehicle[J]. Journal of Astronautics, 2021, 42(7): 807-819 (in Chinese). [5] 相 华, 徐永东, 张立同, 等. 液相先驱体转化法制备TaC抗烧蚀材料[J]. 无机材料学报, 2006, 21(4): 893-898. XIANG H, XU Y D, ZHANG L T, et al. Preparation of TaC anti-ablation materials by liquid precursor[J]. Journal of Inorganic Materials, 2006, 21(4): 893-898 (in Chinese). [6] 周亦人, 沈自才, 齐振一, 等. 中国航天科技发展对高性能材料的需求[J]. 材料工程, 2021, 49(11): 41-50. ZHOU Y R, SHEN Z C, QI Z Y, et al. Demand for high performance materials in development of China's aerospace science and technology[J]. Journal of Materials Engineering, 2021, 49(11): 41-50 (in Chinese). [7] WUCHINA E, OPILA E, OPEKA M, et al. UHTCs: ultra-high temperature ceramic materials for extreme environment applications[J]. The Electrochemical Society Interface, 2007, 16(4): 30-36. [8] FAHRENHOLTZ W G, HILMAS G E. Ultra-high temperature ceramics: materials for extreme environments[J]. Scripta Materialia, 2017, 129: 94-99. [9] 杨路平, 周长灵, 王艳艳, 等. 超高温材料的研究进展[J]. 佛山陶瓷, 2017, 27(10): 1-7. YANG L P, ZHOU C L, WANG Y Y, et al. Research progress of ultra-high temperature materials[J]. Foshan Ceramics, 2017, 27(10): 1-7 (in Chinese). [10] NI D W, CHENG C, ZHANG Z, et al. Advances in ultra-high temperature ceramics, composites, and coatings[J]. Journal of Advanced Ceramics, 2022(1): 1-56. [11] GOLLA B R, MUKHOPADHYAY A, BASU B, et al. Review on ultra-high temperature boride ceramics[J]. Progress in Materials Science, 2020, 111: 100651. [12] FAHRENHOLTZ W G, HILMAS G E, TALMY I G, et al. Refractory diborides of zirconium and hafnium[J]. Journal of the American Ceramic Society, 2007, 90(5): 1347-1364. [13] JUSTIN J F, JANKOWIAK A. Ultra high temperature ceramics: densification, properties and thermal stability[J]. Aerospace Lab, 2011(3): 1-11. [14] ZHANG X H, HILMAS G E, FAHRENHOLTZ W G. Synthesis, densification, and mechanical properties of TaB2[J]. Materials Letters, 2008, 62(27): 4251-4253. [15] JAHAN N, ALI M A. A theoretical study of elastic, electronic, optical and thermodynamic properties of AlB2 and TaB2[J]. Condensed Matter, 2014. [16] BASU B, RAJU G B, SURI A K. Processing and properties of monolithic TiB2 based materials[J]. International Materials Reviews, 2006, 51(6): 352-374. [17] JIN X C, FAN X L, LU C S, et al. Advances in oxidation and ablation resistance of high and ultra-high temperature ceramics modified or coated carbon/carbon composites[J]. Journal of the European Ceramic Society, 2018, 38(1): 1-28. [18] ZAPATA-SOLVAS E, JAYASEELAN D D, LIN H T, et al. Mechanical properties of ZrB2- and HfB2-based ultra-high temperature ceramics fabricated by spark plasma sintering[J]. Journal of the European Ceramic Society, 2013, 33(7): 1373-1386. [19] USHAKOV S V, NAVROTSKY A, HONG Q J, et al. Carbides and nitrides of zirconium and hafnium[J]. Materials, 2019, 12(17): 2728. [20] BUYAKOVA S P, DEDOVA E S, WANG D K, et al. Phase evolution during entropic stabilization of ZrC, NbC, HfC, and TiC[J]. Ceramics International, 2022, 48(8): 11747-11755. [21] COTTON J. Ultra-high-temperature ceramics[J]. Advanced Materials and Processes, 2010, 168(6): 26-28. [22] MALLICK A, CHAKRABORTY S, DAS P. Synthesis and consolidation of ZrC based ceramics: a review[J]. Reviews on Advanced Materials Science, 2016, 44(2): 109-133. [23] GUO Y L, CHEN J C, SONG W, et al. Electronic, mechanical and thermodynamic properties of ZrC, HfC and their solid solutions studied by first-principles calculation[J]. Solid State Communications, 2021, 338: 114481. [24] 爨炳辰, 谢征芳. 碳化钽陶瓷材料制备方法的研究进展[J]. 陶瓷, 2017(4): 38-42. CUAN B C, XIE Z F. Research progress on preparation methods of tantalum carbide ceramic materials[J]. Ceramics, 2017(4): 38-42 (in Chinese). [25] FARHADIZADEH A R, GHOMI H. Mechanical, structural, and thermodynamic properties of TaC-ZrC ultra-high temperature ceramics using first principle methods[J]. Materials Research Express, 2020, 7(3): 036502. [26] LÉVY F, HONES P, SCHMID P E, et al. Electronic states and mechanical properties in transition metal nitrides[J]. Surface and Coatings Technology, 1999, 120/121: 284-290. [27] LI D, TIAN F B, DUAN D F, et al. Mechanical and metallic properties of tantalum nitrides from first-principles calculations[J]. RSC Advances, 2014, 4(20): 10133-10139. [28] MEI Z G, BHATTACHARYA S, YACOUT A M. First-principles study of fracture toughness enhancement in transition metal nitrides[J]. Surface and Coatings Technology, 2019, 357: 903-909. [29] HARRISON R W, LEE W E. Processing and properties of ZrC, ZrN and ZrCN ceramics: a review[J]. Advances in Applied Ceramics, 2016, 115(5): 294-307. [30] IONESCU E, KLEEBE H J, RIEDEL R. Silicon-containing polymer-derived ceramic nanocomposites (PDC-NCs): preparative approaches and properties[J]. Chemical Society Reviews, 2012, 41(15): 5032-5052. [31] IONESCU E, BERNARD S, LUCAS R, et al. Polymer-derived ultra-high temperature ceramics (UHTCs) and related materials[J]. Advanced Engineering Materials, 2019, 21(8): 1900269. [32] JIANG J M, WANG S, LI W, et al. Low-temperature synthesis of tantalum carbide by facile one-pot reaction[J]. Ceramics International, 2016, 42(6): 7118-7124. [33] CHENG Z, FOROUGHI P, BEHRENS A. Synthesis of nanocrystalline TaC powders via single-step high temperature spray pyrolysis from solution precursors[J]. Ceramics International, 2017, 43(3): 3431-3434. [34] SHIMADA S, INAGAKI M, MATSUI K. Oxidation kinetics of hafnium carbide in the temperature range of 480 to 600 ℃[J]. Journal of the American Ceramic Society, 1992, 75(10): 2671-2678. [35] DESMAISON-BRUT M, ALEXANDRE N, DESMAISON J. Comparison of the oxidation behaviour of two dense hot isostatically pressed tantalum carbide (TaC and Ta2C) Materials[J]. Journal of the European Ceramic Society, 1997, 17(11): 1325-1334. [36] ZHANG J, WANG S, LI W, et al. Understanding the oxidation behavior of Ta-Hf-C ternary ceramics at high temperature[J]. Corrosion Science, 2020, 164: 108348. [37] 肖 鹏, 祝玉林, 王 松, 等. 超高熔点TaxHf-xC固溶陶瓷的制备工艺与性能研究进展[J]. 无机材料学报, 2021, 36(7): 685-694. XIAO P, ZHU Y L, WANG S, et al. Research progress on the preparation and characterization of ultra refractory TaxHf-xC solid solution ceramics[J]. Journal of Inorganic Materials, 2021, 36(7): 685-694 (in Chinese). [38] 蒋进明. Ta-Hf(Zr)-C三元陶瓷的制备及性能研究[D]. 长沙: 国防科学技术大学, 2017. JIANG J M. Preparation and characterization of Ta-Hf(Zr)-C ternary ceramics[D]. Changsha: National University of Defense Technology, 2017 (in Chinese). [39] NAZAROVA S Z, KURMAEV E Z, MEDVEDEVA N I, et al. Physical properties and electronic structure of TaC-HfC solid solutions[J]. Russian Journal of Inorganic Chemistry, 2007, 52(2): 233-237. [40] CHENG J, DONG Z J, ZHU H, et al. Synthesis and ceramisation of organometallic precursors for Ta4HfC5 and TaHfC2 ultra-fine powders through a facile one-pot reaction[J]. Journal of Alloys and Compounds, 2022, 898: 162989. [41] LU Y, SUN Y N, ZHANG T Z, et al. Polymer-derived Ta4HfC5 nanoscale ultrahigh-temperature ceramics: synthesis, microstructure and properties[J]. Journal of the European Ceramic Society, 2019, 39(2/3): 205-211. [42] 孙娅楠, 陈凤华, 张永庆, 等. 前驱体法制备Ta4HfC5超纯超细纳米粉体[J]. 宇航材料工艺, 2019, 49(6): 43-46. SUN Y N, CHEN F H, ZHANG Y Q, et al. Synthesis of an ultrafine and pure Ta4HfC5 powder from ceramic precursor[J]. Aerospace Materials & Technology, 2019, 49(6): 43-46 (in Chinese). [43] PELLEGRINI C, BALAT-PICHELIN M, RAPAUD O, et al. Oxidation resistance of Zr- and Hf-diboride composites containing SiC in air plasma up to 2 600 K for aerospace applications[J]. Ceramics International, 2022, 48(2): 2177-2190. [44] XU X T, PAN X H, NIU Y R, et al. Difference evaluation on ablation behaviors of ZrC-based and ZrB2-based UHTCs coatings[J]. Corrosion Science, 2021, 180: 109181. [45] TALMY I G, ZAYKOSKI J A, OPEKA MM, et al. Oxidation of ZrB2 ceramics modified with SiC and group IV-VI transition metal diborides[J]. Proceedings-Electrochemical Society, 2001. [46] XIE Y L, SANDERS JR T H, SPEYER R F. Solution-based synthesis of submicrometer ZrB2 and ZrB2-TaB2[J]. Journal of the American Ceramic Society, 2008, 91(5): 1469-1474. [47] NIU Y R, PU H, HUANG L P, et al. Microstructure and ablation property of TaC-SiC composite coatings[J]. Key Engineering Materials, 2016, 697: 535-538. [48] 李可琢, 张海军, 苑高千, 等. 聚碳硅烷制备SiC陶瓷研究进展[J]. 耐火材料, 2020, 54(3): 260-265. LI K Z, ZHANG H J, YUAN G Q, et al. Research progress of SiC ceramics prepared by polycarbosilane[J]. Refractories, 2020, 54(3): 260-265 (in Chinese). [49] LU Y, CHEN F H, AN P F, et al. Polymer precursor synthesis of TaC-SiC ultrahigh temperature ceramic nanocomposites[J]. RSC Advances, 2016, 6(91): 88770-88776. [50] CAI T, LIU D, QIU W F, et al. Polymer precursor-derived HfC-SiC ultrahigh-temperature ceramic nanocomposites[J]. Journal of the American Ceramic Society, 2018, 101(1): 20-24. [51] PATRA N, LEE W E. Facile precursor synthesis of HfC-SiC ultra-high-temperature ceramic composite powder for potential hypersonic applications[J]. ACS Applied Nano Materials, 2018, 1(9): 4502-4508. [52] WANG X Z, ZHANG L Y, WANG Y F. Preparation of HfC-SiC ultra-high-temperature ceramics by the copolycondensation of HfC and SiC precursors[J]. Journal of Materials Science, 2022, 57(7): 4467-4480. [53] BAI W C, JIAN K, SHI Y L. The preparation of LPVCS with high ceramic yield and low oxygen content[J]. Advances in Applied Ceramics, 2018, 117(6): 369-375. [54] CHENG J, WANG X Z, WANG H, et al. Preparation and high-temperature behavior of HfC-SiC nanocomposites derived from a non-oxygen single-source-precursor[J]. Journal of the American Ceramic Society, 2017, 100(11): 5044-5055. [55] GAO Q, HAN C, WANG X Z, et al. Stepwise synthesis of a Zr-C-Si main chain polymer precursor for ZrC/SiC/C composite ceramics[J]. RSC Advances, 2022, 12(4): 2253-2261. [56] WANG H, CHEN X B, GAO B, et al. Synthesis and characterization of a novel precursor-derived ZrC/ZrB2 ultra-high-temperature ceramic composite[J]. Applied Organometallic Chemistry, 2013, 27(2): 79-84. [57] SHEN J, TANG Z C, TUSIIME R, et al. Effects of hafnium sources and hafnium content on the structures and properties of SiBNC-Hf ceramic precursors[J]. Journal of the American Ceramic Society, 2023, 106(5): 3239-3251. [58] 龙 鑫. 碳化锆复相陶瓷前驱体的合成与理化性能研究[D]. 长沙: 国防科学技术大学, 2016. LONG X. Synthesis and physicochemical properties of ZrC composite ceramic precursors[D]. Changsha: National University of Defense Technology, 2016 (in Chinese). [59] AMORÓS P, BELTRÁN D, GUILLEM C, et al. Synthesis and characterization of SiC/MC/C ceramics (M = Ti, Zr, Hf) starting from totally non-oxidic precursors[J]. Chemistry of Materials, 2002, 14(4): 1585-1590. [60] YU Z J, YANG Y J, MAO K W, et al. Single-source-precursor synthesis and phase evolution of SiC-TaC-C ceramic nanocomposites containing core-shell structured TaC@C nanoparticles[J]. Journal of Advanced Ceramics, 2020, 9(3): 320-328. [61] WEN Q B, XU Y P, XU B B, et al. Single-source-precursor synthesis of dense SiC/HfCxN1-x-based ultrahigh-temperature ceramic nanocomposites[J]. Nanoscale, 2014, 6(22): 13678-13689. [62] 孙敬伟, 王洪磊, 孙楚函, 等. 碳源对先驱体转化法制备TaC陶瓷粉体微观结构及性能影响[J]. 无机材料学报, 2023, 38(2): 184-192. SUN J W, WANG H L, SUN C H, et al. Effects of carbon sources on structure and properties of TaC ceramic powder prepared by polymer derived ceramics[J]. Journal of Inorganic Materials, 2023, 38(2): 184-192 (in Chinese). [63] WEN Q B, YU Z J, RIEDEL R, et al. Single-source-precursor synthesis and high-temperature evolution of a boron-containing SiC/HfC ceramic nano/micro composite[J]. Journal of the European Ceramic Society, 2021, 41(5): 3002-3012. [64] WEN Q B, YU Z J, RIEDEL R, et al. Significant improvement of high-temperature oxidation resistance of HfC/SiC ceramic nanocomposites with the incorporation of a small amount of boron[J]. Journal of the European Ceramic Society, 2020, 40(10): 3499-3508. [65] JAYASEELAN D D, ZAPATA-SOLVAS E, CHATER R J, et al. Structural and compositional analyses of oxidised layers of ZrB2-based UHTCs[J]. Journal of the European Ceramic Society, 2015, 35(15): 4059-4071. [66] YU Z J, LV X, LAI S Y, et al. ZrC-ZrB2-SiC ceramic nanocomposites derived from a novel single-source precursor with high ceramic yield[J]. Journal of Advanced Ceramics, 2019, 8(1): 112-120. [67] YU Z J, PEI Y X, LAI S Y, et al. Single-source-precursor synthesis, microstructure and high temperature behavior of TiC-TiB2-SiC ceramic nanocomposites[J]. Ceramics International, 2017, 43(8): 5949-5956. [68] CHENG J, WANG J, WANG X Z, et al. Preparation and high-temperature performance of HfC-based nanocomposites derived from precursor with Hf-(O, N) bonds[J]. Ceramics International, 2017, 43(9): 7159-7165. [69] FENG B, PETER J, FASEL C, et al. High-temperature phase and microstructure evolution of polymer-derived SiZrCN and SiZrBCN ceramic nanocomposites[J]. Journal of the American Ceramic Society, 2020, 103(12): 7001-7013. [70] YUAN J, HAPIS S, BREITZKE H, et al. Single-source-precursor synthesis of hafnium-containing ultrahigh-temperature ceramic nanocomposites (UHTC-NCs)[J]. Inorganic Chemistry, 2014, 53(19): 10443-10455. |
[1] | 裴天蕊, 齐冬有, 邹德麟, 蔡永慧, 汪智勇, 郝禄禄, 王亚丽, 张钰, 刘洪印. 矿渣-高贝利特硫铝酸盐水泥抗硫酸盐侵蚀机理的研究[J]. 硅酸盐通报, 2023, 42(8): 2683-2691. |
[2] | 褚洪岩, 安圆圆, 秦健健, 蒋金洋. 轻质高性能混凝土力学性能及微观结构研究[J]. 硅酸盐通报, 2023, 42(8): 2722-2732. |
[3] | 冯玉钏, 贾小龙, 惠迎新, 韩方元, 万磊. 母岩类型及石粉含量对机制砂混凝土性能影响研究[J]. 硅酸盐通报, 2023, 42(8): 2773-2780. |
[4] | 罗哲, 黄敦文, 彭晖. 碱激发偏高岭土-矿渣砂浆的碱骨料反应机理研究[J]. 硅酸盐通报, 2023, 42(8): 2830-2836. |
[5] | 韩炎兴, 邵斯杰, 施韬, 蓝滢佳. 碳化硅晶须对水泥基材料抗拉及断裂性能的影响[J]. 硅酸盐通报, 2023, 42(7): 2300-2308. |
[6] | 王琴, 张瑞峰, 郭志翔, 齐国栋, 朱宇华, 汤羽扬. 产地来源和陈化方式对石灰结构和性能的影响[J]. 硅酸盐通报, 2023, 42(7): 2361-2371. |
[7] | 徐瑞, 黄伟, 张丽, 张耄耋, 唐刚. 钢渣混合土基层材料干缩及抗冻性能研究[J]. 硅酸盐通报, 2023, 42(7): 2479-2487. |
[8] | 吴胜坤, 黄天勇, 谢岩, 王展鹏, 包琦, 张敏, 叶航, 刘琦. 二氧化碳矿化养护水泥基材料研究进展[J]. 硅酸盐通报, 2023, 42(6): 1897-1911. |
[9] | 杨昭, 石建军, 许新春, 张志恒. 蛇纹石混凝土研究应用进展[J]. 硅酸盐通报, 2023, 42(6): 1912-1920. |
[10] | 曹锋, 乔宏霞, 张颖, 李双营, 赵紫岩. 新型生物质硅掺合料的活性及影响因素研究[J]. 硅酸盐通报, 2023, 42(6): 2140-2149. |
[11] | 罗小雨, 李晓鸿, 张梦娜, 陈浩, 鲍之豪, 陈建军. 聚硅氮烷的干法纺丝及纤维的紫外辐照交联研究[J]. 硅酸盐通报, 2023, 42(6): 2197-2205. |
[12] | 袁志勇, 阎法强, 许承铭, 吴佳莉, 廖仓冬, 郑猛, 吴英豪. 三种典型直流特高压用氧化铝电瓷组成、结构与力学性能的对比研究[J]. 硅酸盐通报, 2023, 42(6): 2206-2214. |
[13] | 张晓静, 王德志, 靳凯戎, 刘江, 关岩. 花岗岩石粉对水泥浆体力学性能的影响[J]. 硅酸盐通报, 2023, 42(5): 1704-1709. |
[14] | 薛兴勇, 韩要丛, 苏俏俏, 徐梦雪, 崔学民. 铜渣基磷酸盐胶凝材料的力学性能与微观结构[J]. 硅酸盐通报, 2023, 42(5): 1750-1757. |
[15] | 高英力, 冯心崚, 龙国鑫, 卜涛, 李正康. 混杂纤维-尾矿砂ECC配合比优化及疲劳性能研究[J]. 硅酸盐通报, 2023, 42(5): 1785-1793. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||