[1] KIM J H, CHOI S W, LEE K M, et al. Influence of internal curing on the pore size distribution of high strength concrete[J]. Construction and Building Materials, 2018, 192: 50-57. [2] NEVILLE A, AÏTCIN P C. High performance concrete: an overview[J]. Materials and Structures, 1998, 31(2): 111-117. [3] GOLIAS M, CASTRO J, WEISS J. The influence of the initial moisture content of lightweight aggregate on internal curing[J]. Construction and Building Materials, 2012, 35: 52-62. [4] ZHANG J, HOU D W, CHEN H Y. Experimental and theoretical studies on autogenous shrinkage of concrete at early ages[J]. Journal of Materials in Civil Engineering, 2011, 23(3): 312-320. [5] 姚运仕, 刘欢建, 任 峰, 等. 高性能混凝土振动搅拌试验研究[J]. 硅酸盐通报, 2020, 39(3): 730-733. YAO Y S, LIU H J, REN F, et al. Experimental study on vibration mixing of high-performance concrete[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(3): 730-733 (in Chinese). [6] WEBER S, REINHARDT H W. A new generation of high performance concrete: concrete with autogenous curing[J]. Advanced Cement Based Materials, 1997, 6(2): 59-68. [7] PRAMUSANTO P, NURROCHMAN A, MAMBY H E, et al. High strength lightweight concrete with expandable perlite as the aggregate[J]. IOP Conference Series: Materials Science and Engineering, 2020, 830(4): 042040. [8] IBRAHIM M, AHMAD A, BARRY M S, et al. Durability of structural lightweight concrete containing expanded perlite aggregate[J]. International Journal of Concrete Structures and Materials, 2020, 14(1): 1-15. [9] MOHAMMAD M, MASAD E, SEERS T, et al. Properties and microstructure distribution of high-performance thermal insulation concrete[J]. Materials, 2020, 13(9): 2091. [10] PAPANICOLAOU C G, KAFFETZAKIS M I. Lightweight aggregate self-compacting concrete: state-of-the-art & pumice application[J]. Journal of Advanced Concrete Technology, 2011, 9(1): 15-29. [11] LU J X, SHEN P L, ZHENG H B, et al. Development and characteristics of ultra high-performance lightweight cementitious composites (UHP-LCCs)[J]. Cement and Concrete Research, 2021, 145: 106462. [12] XIE Y J, ZHOU Q Q, LONG G C, et al. Experimental investigation on mechanical property and microstructure of ultra-high-performance concrete with ceramsite sand[J]. Structural Concrete, 2022, 23(4): 2391-2404. [13] XU F M, LIN X S, ZHOU A N. Performance of internal curing materials in high-performance concrete: a review[J]. Construction and Building Materials, 2021, 311: 125250. [14] 刘家彬, 张明亮, 秦鸿根. 轻砂内养护剂的协同膨胀效应对微膨胀混凝土变形性能的影响[J]. 湖南大学学报(自然科学版), 2022, 49(3): 196-202. LIU J B, ZHANG M L, QIN H G. Effect of synergistic expansion of light sand internal curing agent on deformation performance of micro-expansion concrete[J]. Journal of Hunan University (Natural Sciences), 2022, 49(3): 196-202 (in Chinese). [15] 张高展, 葛竞成, 丁庆军, 等. 轻质超高性能混凝土的制备及性能形成机理[J]. 硅酸盐学报, 2021, 49(2): 381-390. ZHANG G Z, GE J C, DING Q J, et al. Preparation and formation mechanism of lightweight ultra-high performance concrete[J]. Journal of the Chinese Ceramic Society, 2021, 49(2): 381-390 (in Chinese). [16] LI P P, YU Q L, BROUWERS H J H. Effect of coarse basalt aggregates on the properties of ultra-high performance concrete (UHPC)[J]. Construction and Building Materials, 2018, 170: 649-659. [17] LIM J, RAMAN S, SAFIUDDIN M, et al. Autogenous shrinkage, microstructure, and strength of ultra-high performance concrete incorporating carbon nanofibers[J]. Materials, 2019, 12(2): 320. [18] WANG X P, YU R, SHUI Z H, et al. Development of a novel cleaner construction product: ultra-high performance concrete incorporating lead-zinc tailings[J]. Journal of Cleaner Production, 2018, 196: 172-182. [19] VATANNIA S, KEARSLEY E, MOSTERT D. Development of economic, practical and green ultra-high performance fiber reinforced concrete verified by particle packing model[J]. Case Studies in Construction Materials, 2020, 13: e00415. [20] FUNK J E, DINGER D R. Predictive process control of crowded particulate suspensions: applied to ceramic manufacturing[M]. Springer Science & Business Media, 2013. [21] CHU H Y, GAO L, QIN J J, et al. Mechanical properties and microstructure of ultra-high-performance concrete with high elastic modulus[J]. Construction and Building Materials, 2022, 335: 127385. [22] 中华人民共和国国家质量监督检验检验总局, 中国国家标准化管理委员会. 水泥胶砂流动度测定方法: GB/T 2419—2005[S]. 北京: 中国标准出版社, 2005. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Test method for fluidity of cement mortar: GB/T2419—2005[S]. Beijing: Standards Press of China, 2005 (in Chinese). [23] 中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019. Ministry of Housing and Urban-Rural Development of the People's Republic of China, State Market Regulatory Administration. Standard for test methods of physical and mechanical properties of concrete: GB/T 50081—2019[S]. Beijing: China Architecture & Building Press, 2019 (in Chinese). [24] 国家市场监督管理总局, 国家标准化管理委员会. 水泥胶砂强度检验方法(ISO法): GB/T 17671—2021[S]. 北京: 中国标准出版社, 2021. State Market Regulatory Administration, Standardization Administration of the People's Republic of China. Test method of cement mortar strength (ISO method): GB/T 17671—2021[S]. Beijing: Standards Press of China, 2021 (in Chinese). [25] 张文华, 张仔祥, 刘鹏宇, 等. 多尺度纤维增强超高性能混凝土的轴心抗拉和抗压行为[J]. 硅酸盐学报, 2020, 48(8): 1155-1167. ZHANG W H, ZHANG Z X, LIU P Y, et al. Uniaxial tensile and compressive stress-strain behavior of multi-scale fiber-reinforced ultra-high performance concrete[J]. Journal of the Chinese Ceramic Society, 2020, 48(8): 1155-1167 (in Chinese). [26] 中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009. Ministry of Housing and Urban Rural Development of the People's Republic of China. Standard for test methods of long-term performance and durability of ordinary concrete: GB/T 50082—2009[S]. Beijing: China Architecture & Building Press, 2009 (in Chinese). [27] EFNARC. Specification and guidelines for self-compacting concrete: EFNARC—2002[S]. Norfolk: European Federation for Specialist Construction Chemicals and Concrete Systems, 2002. [28] DING Q J, XIANG W H, ZHANG G Z, et al. Effect of pre-wetting lightweight aggregates on the mechanical performances and microstructure of cement pastes[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2020, 35(1): 140-146. [29] 李 洋. 轻集料高强混凝土界面区形成与作用机制研究[D]. 合肥: 安徽建筑大学, 2016. LI Y. Researches on the formation and action mechanism of interfacial transition zone in light aggregate high strength concrete[D]. Hefei: Anhui Jianzhu University, 2016 (in Chinese). [30] 孙道胜, 李 洋, 张高展. 轻集料混凝土界面区形成与作用机理研究进展[J]. 硅酸盐通报, 2016, 35(1): 185-191. SUN D S, LI Y, ZHANG G Z. Review on the mechanism of formation and action of the interfacial transition zone in light aggregate concrete[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(1): 185-191 (in Chinese). [31] 张高展, 葛竞成, 丁庆军, 等. 轻质超高性能混凝土的制备及性能形成机理[J]. 硅酸盐学报, 2021, 49(2): 381-390. ZHANG G Z, GE J C, DING Q J, et al. Preparation and formation mechanism of lightweight ultra-high performance concrete[J]. Journal of the Chinese Ceramic Society, 2021, 49(2): 381-390 (in Chinese). [32] 胡曙光, 王发洲, 丁庆军. 轻集料与水泥石的界面结构[J]. 硅酸盐学报, 2005, 33(6): 713-717. HU S G, WANG F Z, DING Q J. Interface structure between lightweight aggregate and cement paste[J]. Journal of the Chinese Ceramic Society, 2005, 33(6): 713-717 (in Chinese). [33] MENG W N, KHAYAT K. Effects of saturated lightweight sand content on key characteristics of ultra-high-performance concrete[J]. Cement and Concrete Research, 2017, 101: 46-54. [34] OH B H, CHA S W, JANG B S, et al. Development of high-performance concrete having high resistance to chloride penetration[J]. Nuclear Engineering and Design, 2002, 212(1/2/3): 221-231. [35] HE Z H, DU S G, CHEN D. Microstructure of ultra high performance concrete containing lithium slag[J]. Journal of Hazardous Materials, 2018, 353: 35-43. [36] 张高展, 王宇譞, 葛竞成, 等. 轻集料对超高性能混凝土工作和力学性能的影响[J]. 建筑材料学报, 2021, 24(3): 499-507. ZHANG G Z, WANG Y X, GE J C, et al. Effect of lightweight aggregate on workability and mechanical properties of ultra-high performance concrete[J]. Journal of Building Materials, 2021, 24(3): 499-507 (in Chinese). [37] 丁庆军, 胡 俊, 刘勇强, 等. 轻质超高性能混凝土的设计与研究[J]. 混凝土, 2019(9): 1-5. DING Q J, HU J, LIU Y Q, et al. Research on preparation and performance of lightweight ultra high performance concrete[J]. Concrete, 2019(9): 1-5 (in Chinese). [38] HE T, XIANG W H, ZHANG J A, et al. Influence of water-binder ratio on the mechanical strength and microstructure of arch shell interface transition zone[J]. Buildings, 2022, 12(4): 491. [39] MENG L Q, ZHANG C X, WEI J Q, et al. Mechanical properties and microstructure of ultra-high strength concrete with lightweight aggregate[J]. Case Studies in Construction Materials, 2023, 18: e01745. |