[1] 谭 昱, 陈儒发, 谭逸波, 等. 港珠澳大桥低温升抗裂C45承台大体积混凝土研究与应用[J]. 公路, 2016, 61(5): 282-288. TAN Y, CHEN R F, TAN Y B, et al. Research and application of C45 mass concrete with low temperature rise and crack resistance for bearing platform of Hong Kong-Zhuhai-Macao bridge[J]. Highway, 2016, 61(5): 282-288 (in Chinese). [2] 王冬松. 杭州湾跨海大桥高性能海工混凝土配合比设计[J]. 公路, 2009, 54(7): 299-303. WANG D S. Mix proportion design of high performance marine concrete for Hangzhou Bay cross-sea bridge[J]. Highway, 2009, 54(7): 299-303 (in Chinese). [3] 杨海成, 胡正涛, 于 方, 等. 海水环境粉煤灰混凝土结构耐久性现场检测与评估分析[J]. 海洋工程, 2019, 37(2): 104-111. YANG H C, HU Z T, YU F, et al. Field test and evaluation analysis on durability of fly ash concrete structures in seawater environment[J]. The Ocean Engineering, 2019, 37(2): 104-111 (in Chinese). [4] 李茂辉, 杨志强, 王有团, 等. 粉煤灰复合胶凝材料充填体强度与水化机理研究[J]. 中国矿业大学学报, 2015, 44(4): 650-655+695. LI M H, YANG Z Q, WANG Y T, et al. Experiment study of compressive strength and mechanical property of filling body for fly ash composite cementitious materials[J]. Journal of China University of Mining & Technology, 2015, 44(4): 650-655+695 (in Chinese). [5] 张国栋, 吕兴栋, 杨凤利, 等. 粉煤灰/矿粉-水泥胶凝体系的水化放热性能[J]. 济南大学学报(自然科学版), 2014, 28(5): 386-390. ZHANG G D, LYU X D, YANG F L, et al. Effect of mineral admixtures on the hydration heat evolution of fly ash/slag-cement cementitious system[J]. Journal of University of Jinan (Science and Technology), 2014, 28(5): 386-390 (in Chinese). [6] 朱鹏飞, 宫经伟, 唐新军. 大体积混凝土胶凝材料体系水化放热规律研究[J]. 长江科学院院报, 2018, 35(6): 111-116. ZHU P F, GONG J W, TANG X J. Law of hydration heat of mass concrete cementitious materials[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(6): 111-116 (in Chinese). [7] SHI M X, WANG Q, ZHOU Z K. Comparison of the properties between high-volume fly ash concrete and high-volume steel slag concrete under temperature matching curing condition[J]. Construction and Building Materials, 2015, 98: 649-655. [8] 辜振睿, 刘晓琴, 王海龙. 水化热抑制剂对水泥水化的调控作用[J]. 新型建筑材料, 2021, 48(8): 47-50+54. GU Z R, LIU X Q, WANG H L. Regulating effect of hydration heat inhibitor on cement hydration process[J]. New Building Materials, 2021, 48(8): 47-50+54 (in Chinese). [9] 张 浩. 水化热抑制剂对水泥基材料水化行为的影响[D]. 南京: 东南大学, 2021. ZHANG H. Effct of temperature rising inhibitor on hydration behaviour of cementitious materials[D]. Nanjing: Southeast University, 2021 (in Chinese). [10] 严 宇. 水化温升抑制材料调控水泥水化放热历程的作用机制[D]. 南京: 东南大学, 2020. YAN Y. Mechanism study of temperature rise inhibitor affecting the exothermic process of cement hydration[D]. Nanjing: Southeast University, 2020 (in Chinese). [11] 秦 媛. 水化温升抑制材料对水泥-粉煤灰/矿粉性能的影响规律及作用机制[D]. 南京: 东南大学, 2021. QIN Y. Influence law and mechanism of hydration temperature rise inhibiting materials on properties of cement-fly ash/mineral powder[D]. Nanjing: Southeast University, 2021 (in Chinese). [12] 陈炜一, 周予启, 李 嵩, 等. 水化热抑制剂对水泥-粉煤灰胶凝材料水化和混凝土性能的影响[J]. 硅酸盐学报, 2021, 49(8): 1609-1618. CHEN W Y, ZHOU Y Q, LI S, et al. Impact of temperature rising inhibitor on hydration of cement-fly ash cementitious materials and performance of concrete[J]. Journal of the Chinese Ceramic Society, 2021, 49(8): 1609-1618 (in Chinese). [13] 魏小胜, 肖莲珍, 李宗津. 采用电阻率法研究水泥水化过程[J]. 硅酸盐学报, 2004, 32(1): 34-38. WEI X S, XIAO L Z, LI Z J. Study on hydration of Portland cement using an electrical resistivity method[J]. Journal of the Chinese Ceramic Society, 2004, 32(1): 34-38 (in Chinese). [14] 孔祥明, 卢子臣, 张朝阳. 水泥水化机理及聚合物外加剂对水泥水化影响的研究进展[J]. 硅酸盐学报, 2017, 45(2): 274-281. KONG X M, LU Z C, ZHANG C Y. Recent development on understanding cement hydration mechanism and effects of chemical admixtures on cement hydration[J]. Journal of the Chinese Ceramic Society, 2017, 45(2): 274-281 (in Chinese). [15] SCRIVENER K L, NONAT A. Hydration of cementitious materials, present and future[J]. Cement and Concrete Research, 2011, 41(7): 651-665. [16] KNUDSEN T. On particle size distribution in cement hydration[C]//7th International Congress on the Chemistry of Cement. 1980(2): 170-175. [17] ZHANG J, SCHERER G W. Comparison of methods for arresting hydration of cement[J]. Cement and Concrete Research, 2011, 41(10): 1024-1036. [18] 史才军, 元 强. 水泥基材料测试分析方法[M]. 北京: 中国建筑工业出版社, 2018: 131. SHI C J, YUAN Q. Test and analysis method of cement-based materials[M]. Beijing: China Construction Industry Press, 2018: 131 (in Chinese). [19] SMITH B J, ROBERTS L R, FUNKHOUSER G P, et al. Reactions and surface interactions of saccharides in cement slurries[J]. Langmuir, 2012, 28(40): 14202-14217. [20] KIM T, OLEK J. Effects of sample preparation and interpretation of thermogravimetric curves on calcium hydroxide in hydrated pastes and mortars[J]. Transportation Research Record: Journal of the Transportation Research Board, 2012, 2290(1): 10-18. [21] BEZJAK A. Nuclei growth model in kinetic analysis of cement hydration[J]. Cement and Concrete Research, 1986, 16(4): 605-609. |