欢迎访问《硅酸盐通报》官方网站,今天是
分享到:

硅酸盐通报 ›› 2023, Vol. 42 ›› Issue (7): 2429-2438.

所属专题: 水泥混凝土

• 水泥混凝土 • 上一篇    下一篇

基于灰色-神经网络组合模型的纤维混凝土腐蚀劣化预测模型研究

戎泽斌1, 王成1,2   

  1. 1.塔里木大学水利与建筑工程学院,阿拉尔 843300;
    2.塔里木大学南疆岩土工程研究中心,阿拉尔 843300
  • 收稿日期:2023-04-20 修订日期:2023-05-20 出版日期:2023-07-15 发布日期:2023-07-25
  • 通信作者: 王 成,博士,教授。E-mail:wchgghwzy@163.com
  • 作者简介:戎泽斌(1993—),男,助教。主要从事混凝土结构耐久性的研究。E-mail:64857846@qq.com
  • 基金资助:
    国家自然科学基金(52168035);新疆生产建设兵团区域创新引导计划(2018BB045);新疆生产建设兵团重点领域科技攻关计划(2019AB016)

Corrosion Deterioration Prediction Model of Fiber Concrete Based on Grey Neural Network Combination Model

RONG Zebin1, WANG Cheng1,2   

  1. 1. School of Water Conservancy and Architectural Engineering, Tarim University, Alaer 843300, China;
    2. South Xinjiang Geotechnical Engineering Research Center, Tarim University, Alaer 843300, China
  • Received:2023-04-20 Revised:2023-05-20 Online:2023-07-15 Published:2023-07-25

摘要: 将体积掺量为0.3%的聚乙烯醇(PVA)纤维掺入C30混凝土,分别开展不同浓度溶液作用下的全浸泡-烘干试验,从而探究PVA纤维混凝土的抗劣化性能。以劣化试验数据作为原始样本值,分别建立GM(1,1)模型、BP神经网络模型和GM(1,1)-BP神经网络组合模型对样本数据进行拟合精度对比,并对35~50次循环后的相对动弹性模量数值做出预测,分析整体变化趋势。结果表明:混凝土试件在10倍基准浓度溶液下的评价指标变化最稳定,表明PVA体积掺量为0.3%的试件在高浓度溶液下的抗劣化性能较好;GM(1,1)模型对样本的整体趋势变化预测较为准确;BP神经网络模型对样本单一点的变化趋势预测较为准确,整体精度最高;而组合模型克服了两种单一模型的不足之处,预测值与测试值的变化趋势一致,预测效果最好。

关键词: 纤维混凝土, 劣化试验, GM(1,1)模型, BP神经网络模型, 组合模型

Abstract: By adding 0.3% (volume fraction) polyvinyl alcohol (PVA) fiber into C30 concrete, the full immersion-drying tests under the action of different concentration of solution were carried out respectively, so as to explore the performance of anti deterioration performance of PVA fiber concrete. Taking deterioration test data as original sample value, GM (1,1) model, BP neural network model and GM (1,1)-BP neural network combination model were established respectively to compare the fitting accuracy of sample data. The relative dynamic elastic modulus after 35~50 cycles was predicted, and the overall change trend was analyzed. The results show that the evaluation indexes of concrete specimens change most stably in 10 times of the reference concentration solution, indicating that the specimens with 0.3% (volume fraction) PVA have better anti deterioration performance in high concentration solution. GM (1,1) model can accurately predict the overall trend change of sample. BP neural network model is more accurate in predicting the change trend of single sample point, with the highest overall accuracy. The combination model overcomes the shortcomings of two single models and has the best prediction effect. The predicted value of combination model is consistent with the change trend of test value.

Key words: fiber concrete, deterioration test, GM (1,1) model, BP neural network model, combination model

中图分类号: