[1] 张 建, 毛倩瑾, 王子明, 等. 减缩型聚羧酸减水剂提高混凝土早期抗裂性的作用研究[J]. 硅酸盐通报, 2021, 40(10): 3359-3365. ZHANG J, MAO Q J, WANG Z M, et al. Improving early crack resistance of concrete by shrinkage-reducing polycarboxylate superplasticizer[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(10): 3359-3365(in Chinese). [2] 曹世勇. 超高性能水泥基复合材料自收缩特性及其机理研究[J]. 硅酸盐通报, 2015, 34(3): 813-818+823. CAO S Y. Study on autogenous shrinkage characteristic and mechanism of ultra-high performance cementitous composite[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(3): 813-818+823 (in Chinese). [3] 刘 雪, 郭远臣, 王 雪, 等. 混凝土裂缝成因研究进展[J]. 硅酸盐通报, 2018, 37(7): 2173-2178. LIU X, GUO Y C, WANG X, et al. Research progress in the cause analysis of concrete fracture[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(7): 2173-2178 (in Chinese). [4] 陈怀成, 钱春香, 任立夫. 基于微生物矿化技术的水泥基材料早期裂缝自修复[J]. 东南大学学报(自然科学版), 2016, 46(3): 606-611. CHEN H C, QIAN C X, REN L F. Self-healing of early age cracks in cement-based materials based on mineralization of microorganism[J]. Journal of Southeast University (Natural Science Edition), 2016, 46(3): 606-611 (in Chinese). [5] 董方园, 郑山锁, 宋明辰, 等. 高性能混凝土研究进展Ⅱ: 耐久性能及寿命预测模型[J]. 材料导报, 2018, 32(3): 496-502+509. DONG F Y, ZHENG S S, SONG M C, et al. Research progress of high performance concrete Ⅱ: durability and life prediction model[J]. Materials Review, 2018, 32(3): 496-502+509 (in Chinese). [6] SHEN A Q, LIN S L, GUO Y C, et al. Relationship between flexural strength and pore structure of pavement concrete under fatigue loads and Freeze-thaw interaction in seasonal frozen regions[J]. Construction and Building Materials, 2018, 174: 684-692. [7] GUO Y C, CHEN Z H, QIN X, et al. Evolution mechanism of microscopic pores in pavement concrete under multi-field coupling[J]. Construction and Building Materials, 2018, 173: 381-393. [8] LAWRENCE P, CYR M, RINGOT E. Mineral admixtures in mortars effect of inert materials on short-term hydration[J]. Cement and Concrete Research, 2003, 33: 1939-1947. [9] JENSEN O M, HANSEN P F. Water-entrained cement-based materials: Ⅰ. Principles and theoretical background[J]. Cement and Concrete Research, 2001, 31(4): 647-654. [10] JENSEN O M, HANSEN P F. Water-entrained cement-based materials: Ⅱ. Experimental observations[J]. Cement and Concrete Research, 2002, 32(6): 973-978. [11] 李迎春, 王 锐, 黄安永. 二元共聚高吸水性树脂对混凝土性能的影响[J]. 江苏建筑, 2015(5): 101-103+106. LI Y C, WANG R, HUANG A Y. Effects of poly(acrylic acid-co-acrylamide)SAP on the properties of high strength concrete[J]. Jiangsu Construction, 2015(5): 101-103+106 (in Chinese). [12] 涂 妮, 谷 鑫. 超吸水性树脂(SAP)在混凝土中的应用研究[J]. 墙材革新与建筑节能, 2016(5): 67-70. TU N, GU X. Study on the application of super absorbent resin (SAP) in concrete[J]. Wall Materials Innovation & Energy Saving in Buildings, 2016(5): 67-70 (in Chinese). [13] SHI D D, CHEN X D. Flexural tensile fracture behavior of pervious concrete under static preloading[J]. Journal of Materials in Civil Engineering, 2018, 30(11): 6018011-6018015. [14] GROTE D L, PARK S W, ZHOU M. Dynamic behavior of concrete at high strain rates and pressures: I.experimental characterization[J]. International Journal of Impact Engineering, 2001, 25(9): 869-886. [15] 张志强. 高吸水树脂对水泥混凝土性能的影响及机理研究[D]. 长春: 吉林大学,2019. ZHANG Z Q. Study on the influence and mechanism of super absorbent resin on the properties of cement concrete[D]. Changchun: Jilin University, 2019 (in Chinese). [16] YAO Y, ZHU Y, YANG Y Z. Incorporation superabsorbent polymer (SAP) particles as controlling pre-existing flaws to improve the performance of engineered cementitious composites (ECC)[J]. Construction and Building Materials, 2012, 28(1): 139-145. [17] 杨景玉, 郭寅川, 莫石秀, 等. SAP内养生路面混凝土断裂性能研究及预估[C]//全国第二届品质工程论坛暨惠清高速公路绿色科技示范工程现场观摩会, 2019. YANG J Y, GUO Y C, MO S X, et al. Research and prediction of fracture performance of SAP internal curing pavement concrete[C]//The Second National Quality Engineering Forum and Huiqing Expressway Green Technology Demonstration Project Field Observation Meeting, 2019 (in Chinese). [18] YANG J, GUO Y, SHEN A, et al. Research on drying shrinkage deformation and cracking risk of pavement concrete internally cured by SAPs[J]. Construction and Building Materials. 2019, 227: 116705. [19] LYU Z H, SHEN A Q, MO S X, et al. Life-cycle crack resistance and micro characteristics of internally cured concrete with superabsorbent polymers[J]. Construction and Building Materials, 2020, 259: 119794. [20] POWERS T C, BROWNYARD T L. Studies of the physical properties of hardened Portland cement paste[J]. ACI Journal Proceedings, 1947, 43(9): 992-993. [21] KOVLER K, JENSEN O. Activities of RILEM technical committee: internal curing of concrete and anticipated research[J]. Materials Science, 2007. [22] LUAN S, DARWIN D. Effect of age and strength on fracture energy of concrete[J]. Journal of Hydraulic Engineering, 1999. [23] 刘 春. 三点弯曲混凝土梁断裂性能试验及数值模拟[D]. 贵阳: 贵州大学, 2017. LIU C. Experiment and numerical simulation of fracture behavior of three-point bending concrete beams[D]. Guiyang: Guizhou University, 2017 (in Chinese). [24] 中华人民共和国发展与改革委员会. 水工混凝土断裂试验规程: DL/T 5332—2005[S]. 北京: 中国电力出版社, 2005. Commission for Development and Reform of the People's Republic of China. Rules for fracture test of hydraulic concrete[S]. Beijing: China Electric Power Press, 2005 (in Chinese). [25] OHTSU M, SHIGEISHI M, IWASE H, et al. Determination of crack location, type and orientation ina concrete structures by acoustic emission[J]. Magazine of Concrete Research, 1991, 43(155): 127-134. [26] GUTENBERG B, RICHTER C F. Frequency of earthquakes in California[J]. Bulletin of the Seismological Society of America, 1944, 34(4): 185-188. [27] HAN Q H, YANG G, XU J, et al. Acoustic emission data analyses based on crumb rubber concrete beam bending tests[J]. Engineering Fracture Mechanics, 2019, 210: 189-202. [28] SOULIOTI D, BARKOULA N M, PAIPETIS A, et al. Acoustic emission behavior of steel fibre reinforced concrete under bending[J]. Construction and Building Materials, 2009, 23(12): 3532-3536. [29] AGGELIS D G. Classification of cracking mode in concrete by acoustic emission parameters[J]. Mechanics Research Communications, 2011, 38(3): 153-157. [30] SHAHIDAN S, PULIN R, MUHAMAD B N, et al. Damage classification in reinforced concrete beam by acoustic emission signal analysis[J]. Construction and Building Materials, 2013, 45: 78-86. [31] ISODA T, TOMODA Y. Acoustic emission techniques standardized for concrete structures[J]. J Acoust Emission, 2007, 25: 21-32 [32] CHEN C, FAN X Q, CHEN X D. Experimental investigation of concrete fracture behavior with different loading rates based on acoustic emission[J]. Construction and Building Materials, 2020, 237: 117472. [33] KONG X M, ZHANG Z L, LU Z C. Effect of pre-soaked superabsorbent polymer on shrinkage of high-strength concrete[J].Materials and Structures, 2015, 48(9): 2741-2758. |