[1] YOO D Y, BANTHIA N, YANG J M, et al. Size effect in normal- and high-strength amorphous metallic and steel fiber reinforced concrete beams[J]. Construction and Building Materials, 2016, 121: 676-685. [2] LU M Y, XIAO H G, LIU M, et al. Improved interfacial strength of SiO2 coated carbon fiber in cement matrix[J]. Cement and Concrete Composites, 2018, 91: 21-28. [3] LEE M K, BARR B I G. An overview of the fatigue behaviour of plain and fibre reinforced concrete[J]. Cement and Concrete Composites, 2004, 26(4): 299-305. [4] FENG J H, YANG F, QIAN S Z. Improving the bond between polypropylene fiber and cement matrix by nano calcium carbonate modification[J]. Construction and Building Materials, 2021, 269: 121249. [5] YU K Q, LI L Z, YU J T, et al. Feasibility of using ultra-high ductility cementitious composites for concrete structures without steel rebar[J]. Engineering Structures. 2018, 170: 11-20. [6] BANTHIA N. A study of some factors affecting the fiber-matrix bond in steel fiber reinforced concrete[J]. Canadian Journal of Civil Engineering, 1990, 17(4): 610-620. [7] WU Z M, KHAYAT K H, SHI C J. Effect of nano-SiO2 particles and curing time on development of fiber-matrix bond properties and microstructure of ultra-high strength concrete[J]. Cement and Concrete Research, 2017, 95: 247-256. [8] LI V C, WU H C, CHAN Y W. Effect of plasma treatment of polyethylene fibers on interface and ementitious composite properties[J]. Journal of the American Ceramic Society, 2005, 79(3): 700-704. [9] PI Z Y, XIAO H G, DU J J, et al. Interfacial microstructure and bond strength of nano-SiO2-coated steel fibers in cement matrix[J]. Cement and Concrete Composites, 2019, 103: 1-10. [10] SUN M, WEN D J, WANG H W. Influence of corrosion on the interface between zinc phosphate steel fiber and cement[J]. Materials and Corrosion, 2012, 63(1): 67-72. [11] AGGELIS D G, SOULIOTI D V, BARKOULA N M, et al. Influence of fiber chemical coating on the acoustic emission behavior of steel fiber reinforced concrete[J]. Cement and Concrete Composites, 2012, 34(1): 62-67. [12] AGGELIS D G, SOULIOTI D V, GATSELOU E A, et al. Monitoring of the mechanical behavior of concrete with chemically treated steel fibers by acoustic emission[J]. Construction and Building Materials, 2013, 48: 1255-1260. [13] BILBA K, ARSENE M A. Silane treatment of bagasse fiber for reinforcement of cementitious composites[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(9): 1488-1495. [14] YU J, YAO J, LIN X Y, et al. Tensile performance of sustainable strain-hardening cementitious composites with hybrid PVA and recycled PET fibers[J]. Cement and Concrete Research, 2018, 107: 110-123. [15] SOULIOTI D V, BARKOULA N M, KOUTSIANOPOULOS F, et al. The effect of fibre chemical treatment on the steel fibre/cementitious matrix interface[J]. Construction and Building Materials, 2013, 40: 77-83. [16] GANDHI J S, SINGH S, VANOOIJ W J, et al. Evidence for formation of metallo-siloxane bonds by comparison of dip-coated and electrodeposited silane films[J]. Journal of Adhesion Science and Technology, 2006, 20(15): 1741-1768. [17] 姚 勇, 杨贞军, 张 麒. 硅烷涂层提升钢纤维-砂浆界面性能的试验研究[J]. 浙江大学学报(工学版), 2021, 55(1): 1-9+30. YAO Y, YANG Z J, ZHANG Q. Experiment research on improving interface performance of steel fiber and mortal by silane coatings[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(1): 1-9+30 (in Chinese). [18] LIU T J, WEI H N, ZHOU A, et al. Multiscale investigation on tensile properties of ultra-high performance concrete with silane coupling agent modified steel fibers[J]. Cement and Concrete Composites, 2020, 111: 103638. [19] 王硕太, 马国靖, 吴永根. 超声法早期推定道面混凝土28天抗折强度[J]. 混凝土, 2001(8): 32-34. WANG S T, MA G J, WU Y G. Ultrasonic method conclude the 28-day flexural strength of pavement concrete in early stage[J]. Concrete, 2001(8): 32-34 (in Chinese). [20] 许燕莲. 用标准养护7天龄期强度推算28天龄期强度以确定混凝土水灰比[J]. 广东水利水电, 2003(1): 31-33. XU Y L. Determining water- cement ratio by 28 days’ age-strength deduced from 7 days’ in standard curing condition[J]. Guangdong Water Resources and Hydropower, 2003(1): 31-33 (in Chinese). [21] Dalian University of Technology. Standard test methods for fiber reinfored concrete: CECS 13—2009[S]. Beijing: China Planning Press, 2010. [22] CAO M L, XU L, ZHANG C. Rheological and mechanical properties of hybrid fiber reinforced cement mortar[J]. Construction and Building Materials, 2018, 171: 736-742. [23] JCI. Methods of tests for flexural strength and flexural toughness of fiber reinforced concrete [S]. Japan: Japan Concrete Institute, 1984: 45-51. [24] ZENG D M, CAO M L. The flexural behaviors and mechanism of wollastonite microfiber modified ultra-high performance concrete with steel fiber from micro to macro scale[J].Archives of Civil and Mechanical Engineering, 2021, 22(1): 1-19. [25] 朱田路. 低掺量钢纤维混凝土力学性能研究[D]. 郑州: 郑州大学, 2011. ZHU T L. Study on mechanical properties of steel fiber reinforced concrete with low content[D]. Zhengzhou: Zhengzhou University, 2011 (in Chinese). [26] 吕佩佩, 王进美, 邵东锋, 等. 硅烷偶联剂改性棉织物研究[J]. 轻纺工业与技术, 2015, 44(1): 10-12. LYU P P, WANG J M, SHAO D F, et al. Study on modification of cotton fabric with silane coupling agent[J]. Qingfang Gongye Yu Jishu, 2015, 44(1): 10-12 (in Chinese). [27] HELMI M, HALL M R, STEVENS L A, et al. Effects of high-pressure/temperature curing on reactive powder concrete microstructure formation[J]. Construction and Building Materials, 2016, 105: 554-562. [28] XIE Y J, HILL C A S, XIAO Z F, et al. Silane coupling agents used for natural fiber/polymer composites: a review[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(7): 806-819. |