[1] 王瑾玉, 张永海, 魏进家. 功率器件热界面材料研究进展[J]. 工程热物理学报, 2022, 43(10): 2699-2710. WANG J Y, ZHANG Y H, WEI J J. A review of thermal interface materials for power devices[J]. Journal of Engineering Thermophysics, 2022, 43(10): 2699-2710 (in Chinese). [2] SCIAMANNA V, NAIT-ALI B, GONON M. Mechanical properties and thermal conductivity of porous alumina ceramics obtained from particle stabilized foams[J]. Ceramics International, 2015, 41(2): 2599-2606. [3] WU G L, WANG Y Q, WANG K K, et al. The effect of modified AlN on the thermal conductivity, mechanical and thermal properties of AlN/polystyrene composites[J]. RSC Advances, 2016, 6(104): 102542-102548. [4] ZHAO J W, ZHAO R, HUO Y K, et al. Effects of surface roughness, temperature and pressure on interface thermal resistance of thermal interface materials[J]. International Journal of Heat and Mass Transfer, 2019, 140: 705-716. [5] CHUNG D D L. Performance of thermal interface materials[J]. Small, 2022, 18(16): e2200693. [6] YU S Q, HUANG M M, HAO R, et al. Recent advances in thermally conductive polymer composites[J]. High Performance Polymers, 2022, 34(10): 1081-1101. [7] MA H Q, GAO B, WANG M Y, et al. Strategies for enhancing thermal conductivity of polymer-based thermal interface materials: a review[J]. Journal of Materials Science, 2021, 56(2): 1064-1086. [8] XU Y F, WANG X J, HAO Q. A mini review on thermally conductive polymers and polymer-based composites[J]. Composites Communications, 2021, 24: 100617. [9] ZHANG F, FENG Y Y, FENG W. Three-dimensional interconnected networks for thermally conductive polymer composites: design, preparation, properties, and mechanisms[J]. Materials Science and Engineering: R: Reports, 2020, 142: 100580. [10] MEHRA N, LI Y F, YANG X T, et al. Engineering molecular interaction in polymeric hybrids: effect of thermal linker and polymer chain structure on thermal conduction[J]. Composites Part B: Engineering, 2019, 166: 509-515. [11] HUANG Y F, WANG Z G, YU W C, et al. Achieving high thermal conductivity and mechanical reinforcement in ultrahigh molecular weight polyethylene bulk material[J]. Polymer, 2019, 180: 121760. [12] GU J W, LV Z Y, WU Y L, et al. Enhanced thermal conductivity of SiCp/PS composites by electrospinning-hot press technique[J]. Composites Part A: Applied Science and Manufacturing, 2015, 79: 8-13. [13] JIANG F, CUI S Q, RUNGNIM C, et al. Control of a dual-cross-linked boron nitride framework and the optimized design of the thermal conductive network for its thermoresponsive polymeric composites[J]. Chemistry of Materials, 2019, 31(18): 7686-7695. [14] 王绪彬, 张昌海, 张天栋, 等. 三维多孔氮化铝/环氧树脂复合材料的导热与电性能[J]. 复合材料学报: 1-7 (2022-09-06) [2023-02-15]. https://doi.org/10.13801/j.cnki.fhclxb.20220905.002. WANG X B, ZHANG C H, ZHANG T D, et al. Thermal conductivity and electrical properties of three-dimensional porous aluminum nitride/epoxy composites[J]. Acta Materiae Compositae Sinica: 1-7 (2022-09-06) [2023-02-15]. https://doi.org/10.13801/j.cnki.fhclxb.20220905.002 (in Chinese). [15] LIANG J Z, ZHU B. Estimation of thermal conductivity of polymer multiphase composites[J]. Polymer Engineering & Science, 2017, 57(9): 965-972. [16] QU J Y, FAN L, MUKERABIGWI J F, et al. A silicon rubber composite with enhanced thermal conductivity and mechanical properties based on nanodiamond and boron nitride fillers[J]. Polymer Composites, 2021, 42(9): 4390-4396. [17] LEE W, WIE J, KIM J. Enhancement of thermal conductivity of alumina/epoxy composite using poly (glycidyl methacrylate) grafting and crosslinking[J]. Ceramics International, 2021, 47(13): 18662-18668. [18] ZHAO Z B, DU X Y, WANG Y, et al. Preparation of a novel bi-layer modified alumina-based hybrid material and its effect on the thermal conductivity enhancement of polymer composites[J]. Ceramics International, 2022, 48(11): 15483-15492. [19] HU Y, DU G P, CHEN N. A novel approach for Al2O3/epoxy composites with high strength and thermal conductivity[J]. Composites Science and Technology, 2016, 124: 36-43. |