[1] NAQI A L, JANG J. Recent progress in green cement technology utilizing low-carbon emission fuels and raw materials: a review[J]. Sustainability, 2019, 11(2): 537. [2] 杨鹏辉, 姚 远. 地聚物橡胶混凝土的力学、抗冲击性能及强度机理分析[J]. 硅酸盐通报, 2023, 42(1): 239-247. YANG P H, YAO Y. Analysis of mechanical properties, impact resistance and strength mechanism of geopolymer rubber concrete[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(1): 239-247 (in Chinese). [3] KATZ A. Treatments for the improvement of recycled aggregate[J]. Journal of Materials in Civil Engineering, 2004, 16(6): 597-603. [4] DAVIDOVITS J. Geopolymer chemistry and applications[M]. France: Geopolymer Institute, 2011. [5] SHI C J, ROY D, KRIVENKO P. Alkali-activated cements and concretes[M]. USA: Boca Raton, FL, CRC press, 2003. [6] CHEN K Y, WU D Z, XIA L L, et al. Geopolymer concrete durability subjected to aggressive environments: a review of influence factors and comparison with ordinary Portland cement[J]. Construction and Building Materials, 2021, 279: 122496. [7] BERNAL S A, PROVIS J L. Durability of alkali-activated materials: progress and perspectives[J]. Journal of the American Ceramic Society, 2014, 97(4): 997-1008. [8] PENG H, YANG Y Y, GE Y P, et al. Metakaolin-based geopolymer features different pore structure characteristics from ordinary portland cement paste: a mechanistic study[J]. Journal of Materials in Civil Engineering, 2022, 34(12): 04022321. [9] 谷上海, 黄敦文, 杨翼玮, 等. 碱激发偏高岭土-矿渣对氯离子的固化能力及其影响因素[J]. 西安建筑科技大学学报(自然科学版), 2022, 54(2): 191-201. GU S H, HUANG D W, YANG Y W, et al. Chloride binding ability of alkali activated metakaolin/slag blends and its influencing factors[J]. Journal of Xi’an University of Architecture & Technology (Natural Science Edition), 2022, 54(2): 191-201 (in Chinese). [10] SHI C J. Strength, pore structure and permeability of alkali-activated slag mortars[J]. Cement & Concrete Research, 1996, 26(12): 1789-1799. [11] ZHANG J, SHI C J, ZHANG Z H, et al. Durability of alkali-activated materials in aggressive environments: a review on recent studies[J]. Construction and Building Materials, 2017, 152(15): 598-613. [12] ISMAIL I, BERNAL S A, PROVIS J L, et al. Influence of fly ash on the water and chloride permeability of alkali-activated slag mortars and concretes[J]. Construction and Building Materials, 2013, 48: 1187-1201. [13] ZHANG J, SHI C J, ZHANG Z H. Chloride binding of alkali-activated slag/fly ash cements[J]. Construction and Building Materials, 2019, 226: 21-31. [14] KE X Y, BERNAL S A, HUSSEIN O H, et al. Chloride binding and mobility in sodium carbonate-activated slag pastes and mortars[J]. Materials and Structures, 2017, 50(6): 1-13. [15] THOMAS R J, ARIYACHANDRA E, LEZAMA D, et al. Comparison of chloride permeability methods for alkali-activated concrete[J]. Construction and Building Materials, 2018, 165: 104-111. [16] RAVIKUMAR D, NEITHALATH N. Electrically induced chloride ion transport in alkali activated slag concretes and the influence of microstructure[J]. Cement and Concrete Research, 2013, 47: 31-42. [17] AMORIM N S, ANDRADE NETO J S, SANTANA H A, et al. Durability and service life analysis of metakaolin-based geopolymer concretes with respect to chloride penetration using chloride migration test and corrosion potential[J]. Construction and Building Materials, 2021, 287: 122970. [18] HU X, SHI C, SHI Z G, et al. Compressive strength, pore structure and chloride transport properties of alkali-activated slag/fly ash mortars[J]. Cement and Concrete Composites, 2019, 104: 103392. [19] CEVIK A, ALZEEBAREE R, HUMUR G, et al. Effect of nano-silica on the chemical durability and mechanical performance of fly ash based geopolymer concrete[J]. Ceramics International, 2018, 44(11): 12253-12264. [20] MANDELBROT B B, WHEELER J A. The fractal geometry of nature[J]. American Journal of Physics, 1983, 51(3): 286-287. [21] LANGE D A, JENNINGS H M, SHAH S P. Image analysis techniques for characterization of pore structure of cement-based materials[J]. Cement and Concrete Research, 1994, 24(5): 841-853. [22] 杨世玉, 赵人达, 靳贺松, 等. 地聚物砂浆的力学性能与孔结构分形特征分析[J]. 华南理工大学学报(自然科学版), 2020, 48(3): 126-135. YANG S Y, ZHAO R D, JIN H S, et al. Analysis on mechanical properties and fractal characteristics of micropore structure of geopolymer mortar[J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48(3): 126-135 (in Chinese). [23] HUO W W, ZHU Z D, SUN H, et al. Reaction kinetics, mechanical properties, and microstructure of nano-modified recycled concrete fine powder/slag based geopolymers[J]. Journal of Cleaner Production, 2022, 372: 133715. [24] 段 运, 杨子江, 王起才, 等. 负温环境下混凝土孔结构与强度和渗透性的关系[J]. 材料导报, 2022, 36(15): 72-77. DUAN Y, YANG Z J, WANG Q C, et al. Pore structure of concrete at negative temperature curing in relation to strength and penetration[J]. Materials Reports, 2022, 36(15): 72-77 (in Chinese). [25] 张建波, 文俊强, 王宏霞, 等. 混凝土孔体积分形维数及其与氯离子渗透性和强度的关系[J]. 混凝土, 2010(5): 7-9. ZHANG J B, WEN J Q, WANG H X, et al. Pore volume fractal dimension of concrete and its relationship between chloride diffusivity and strength[J]. Concrete, 2010(5): 7-9 (in Chinese). [26] 金珊珊, 张金喜, 陈春珍, 等. 水泥砂浆孔结构分形特征的研究[J]. 建筑材料学报, 2011, 14(1): 92-97+105. JIN S S, ZHANG J X, CHEN C Z, et al. Study of pore fractal characteristic of cement mortar[J]. Journal of Building Materials, 2011, 14(1): 92-97+105 (in Chinese). [27] 张俊芝, 李登辉, 陈 伟, 等. 潮差环境下混凝土氯离子扩散时变性与孔隙分形特征的关系[J]. 自然灾害学报, 2016, 25(6): 51-57. ZHANG J Z, LI D H, CHEN W, et al. Relationship between time-variability of chlorion diffusion in concrete and pore fractal characteristic under tidal range environment[J]. Journal of Natural Disasters, 2016, 25(6): 51-57 (in Chinese). [28] ZHU C, LIU X G, LIU C, et al. Study on the chloride ion transport mechanism of recycled mixed aggregate concrete based on evolution characteristics of pore structure[J]. Construction and Building Materials, 2022, 353: 129101. [29] GLUTH G J G, ARBI K, BERNAL S A, et al. RILEM TC 247-DTA round robin test: carbonation and chloride penetration testing of alkali-activated concretes[J]. Materials and Structures, 2020, 53: 1-17. [30] 彭 晖, 李一聪, 罗 冬, 等. 碱激发偏高岭土/矿渣复合胶凝体系反应水平及影响因素分析[J]. 建筑材料学报, 2020, 23(6): 1390-1397. PENG H, LI Y C, LUO D, et al. Analysis of reaction level and factors of alkali activated metakaolin/GGBFS[J]. Journal of Building Materials, 2020, 23(6): 1390-1397 (in Chinese). [31] 黄庆华, 周承宗, 顾祥林, 等. 混凝土界面过渡区水分传输特性试验研究[J]. 建筑结构学报, 2019, 40(1): 174-180. HUANG Q H, ZHOU C Z, GU X L, et al. Experimental study on moisture transport property of interfacial transition zone in concrete[J]. Journal of Building Structures, 2019, 40(1): 174-180 (in Chinese). [32] BENAVENT V, FRIZON F, POULESQUEN A. Effect of composition and aging on the porous structure of metakaolin-based geopolymers[J]. Journal of Applied Crystallography, 2016, 49(6): 2116-2128. [33] STEINS P, POULESQUEEN A, FRIZON F, et al. Effect of aging and alkali activator on the porous structure of a geopolymer[J]. Journal of Applied Crystallography, 2014, 47(1): 316-324. [34] YIP C, LUKEY G, VAN DEVENTER J. The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation[J]. Cement and Concrete Research, 2004, 35(9): 1688-1697. [35] ZHANG Z H, YAO X, ZHU H J, et al. Role of water in the synthesis of calcined kaolin-based geopolymer[J]. Applied Clay Science, 2009, 43(2): 218-223. [36] CHEN X D, WU S X. Influence of water-to-cement ratio and curing period on pore structure of cement mortar[J]. Construction and Building Materials, 2013, 38: 804-812. [37] NANA A, ALOMAYRI T S, VENYITE P, et al. Mechanical properties and microstructure of a metakaolin-based inorganic polymer mortar reinforced with quartz sand[J]. Silicon, 2020, 14(1): 1-12. [38] LIU Y Z, CHEN S Q, SUN H. Characterizing pores in freeze-dried materials by fractal models and fractal dimensions[J]. Transactions of the CSAE, 2004, 20(6): 41-45. [39] CHOI Y C, PARK B. Effects of high-temperature exposure on fractal dimension of fly-ash-based geopolymer composites[J]. Journal of Materials Research and Technology, 2020, 9(4): 7655-7668. [40] ZENG Q, LI K F, FEN C T, et al. Surface fractal analysis of pore structure of high-volume fly-ash cement pastes[J]. Applied Surface Science, 2010, 257(3): 762-768. [41] 唐 明, 陈 哲, 杨 帆. C50泵送混凝土孔隙分形与氯离子渗透特征[J]. 混凝土, 2010(4): 92-95. TANG M, CHEN Z, YANG F. Research on characteristics of pore fractal and chloride diffusion in C50 pumped concrete[J]. Concrete, 2010(4): 92-95 (in Chinese). [42] ZHAN J H, FU B, CHENG Z Y. Macroscopic properties and pore structure fractal characteristics of alkali-activated metakaolin-slag composite cementitious materials[J]. Polymers, 2022, 14(23): 5217. [43] MA H Q, SUN J W, WU C, et al. Study on the pore and microstructure fractal characteristics of alkali-activated coal gangue-slag mortars[J]. Materials, 2020, 13(11): 2442. [44] ZHANG P, HAN X, GUO J J, et al. Fractal characteristics of geopolymer mortar containing municipal solid waste incineration fly ash and its correlations to pore structure and strength[J]. Fractal and Fractional, 2022, 6(11): 676. [45] 金珊珊, 张金喜, 李 爽. 混凝土孔结构分形特征的研究现状与进展[J]. 混凝土, 2009(10): 34-37+42. JIN S S, ZHANG J X, LI S. Current situation and development of fractal characteristic of pore structure of concrete[J]. Concrete, 2009(10): 34-37+42 (in Chinese). [46] ZHANG J X, MA Y W, HU J, et al. Review on chloride transport in alkali-activated materials: role of precursors, activators and admixtures[J]. Construction and Building Materials, 2022, 328: 127081. [47] OZAWA M, SAKOI Y, FUJIMOTO K, et al. Estimation of chloride diffusion coefficients of high-strength concrete with synthetic fibres after fire exposure[J]. Construction and Building Materials, 2017, 143: 322-329. [48] XIA J, LI L Y. Numerical simulation of ionic transport in cement paste under the action of externally applied electric field[J]. Construction and Building Materials, 2013, 39: 51-59. [49] ABDULRAHMAN A, MOHAMMED A, HUSAIN A, et al. Characteristics of metakaolin-based geopolymer concrete for different mix design parameters[J]. Journal of Materials Research and Technology, 2021, 10: 84-98. [50] ZHONG Q Y, TIAN X, XIE G L, et al. Investigation of setting time and microstructural and mechanical properties of MK/GGBFS-blended geopolymer pastes[J]. Materials, 2022, 15(23): 8431. [51] RODRÍGUEZ E, BERNAL S, MEJÍA DE GUTIÉRREZ R, et al. Hormigón alternativo basado en escorias activadas alcalinamente[J]. Materiales De Construcción, 2008, 58(291): 53-67. [52] 吴中伟. 混凝土的耐久性问题[J]. 混凝土及建筑构件, 1982(2): 2-10. WU Z W. Durability of concrete[J]. Concrete, 1982(2): 2-10 (in Chinese). [53] WU K, LONG J, XU L, et al. A study on the chloride diffusion behavior of blended cement concrete in relation to aggregate and ITZ[J]. Construction and Building Materials, 2019, 223(2): 1063-1073. [54] WONG H, ZOBEL M, BUENFELD N, et al. Influence of the interfacial transition zone and microcracking on the diffusivity, permeability and sorptivity of cement-based materials after drying[J]. Magazine of Concrete Research, 2009, 61(8): 571-589. [55] YANG C C, SU J K. Approximate migration coefficient of interfacial transition zone and the effect of aggregate content on the migration coefficient of mortar[J]. Cement and Concrete Research, 2002, 32(10): 1559-1565. [56] KUENZEL C, LI L, VANDEPERRE L, et al. Influence of sand on the mechanical properties of metakaolin geopolymers[J]. Construction and Building Materials, 2014, 66: 442-446. [57] 耿圆洁, 孙丛涛, 孙 明, 等. 水泥基材料氯离子结合机理及影响因素研究综述[J]. 硅酸盐通报, 2022, 41(8): 2604-2617. GENG Y J, SUN C T, SUN M, et al. Review on mechanism of chloride ion binding and its influencing factors in cement-based materials[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(8): 2604-2617 (in Chinese). [58] KREIJGER P C. The skin of concrete composition and properties[J]. Matériaux et Construction, 1984, 17(4): 275-283. [59] 傅 强, 郑克仁, 谢友均, 等. 水泥乳化沥青砂浆孔体积的分形特征[J]. 硅酸盐学报, 2013, 41(11): 1551-1557. FU Q, ZHENG K R, XIE Y J, et al. Fractal characteristic of pore volume of cement and asphalt mortar[J]. Journal of the Chinese Ceramic Society, 2013, 41(11): 1551-1557 (in Chinese). |