[1] 任辉启, 黄 魁, 朱大明, 等. 南沙群岛珊瑚礁工程地质研究综述[J]. 防护工程, 2015(1): 63-78. REN H Q, HUANG K, ZHU D M, et al. A research review of engineering geology of coral reef in the Nansha Islands[J]. Protective Engineering, 2015(1): 63-78 (in Chinese). [2] 张家铭, 邵晓泉, 王霄龙, 等. 沉桩过程中钙质砂颗粒破碎特性模拟研究[J]. 岩土力学, 2015, 36(1): 272-278. ZHANG J M, SHAO X Q, WANG X L, et al. Discrete element simulation of crushing behavior of calcareous sands during pile jacking[J]. Rock and Soil Mechanics, 2015, 36(1): 272-278 (in Chinese). [3] YANG J N, WANG J B, DONG L, et al. Axial deformation behavior of precompressed coral sand under repeated impacts[J]. Journal of Coastal Research, 2022, 38(3): 592-602. [4] DA B, YU H F, MA H Y, et al. Experimental investigation of whole stress-strain curves of coral concrete[J]. Construction and Building Materials, 2016, 122: 81-89. [5] 石 晗. 钙质砂地基爆炸响应动力特性试验研究[D]. 武汉: 武汉科技大学, 2020. SHI H. Experimental study on dynamic characteristics of explosion response of calcareous sand foundation[D]. Wuhan: Wuhan University of Science and Technology, 2020 (in Chinese). [6] 汪 稔, 吴文娟. 珊瑚礁岩土工程地质的探索与研究: 从事珊瑚礁研究30年[J]. 工程地质学报, 2019, 27(1): 202-207. WANG R, WU W J. Exploration and research on engineering geological properties of coral reefs: engaged in coral reef research for 30 years[J]. Journal of Engineering Geology, 2019, 27(1): 202-207 (in Chinese). [7] 王 林, 江 堃, 刘启超. 珊瑚礁钙质砂工程力学特性研究进展综述[J]. 城市建筑, 2020, 17(14): 95-97. WANG L, JIANG K, LIU Q C. Review on research progress of engineering mechanical properties of calcareous sand in coral reef[J]. Urbanism and Architecture, 2020, 17(14): 95-97 (in Chinese). [8] 汪 稔, 宋朝景, 赵焕庭, 等. 南沙群岛珊瑚礁工程地质[M]. 北京: 科学出版社, 1997. WANG R, SONG C J, ZHAO H T, et al. Engineering geology of coral reef in the Nansha Islands[M]. Beijing: Science Press, 1997 (in Chinese). [9] 张延玲. 地震作用下珊瑚砂场地动力响应与变形机理研究[D]. 重庆: 重庆大学, 2021. ZHANG Y L. Study on dynamic response and deformation mechanism of coral sand under earthquakes[D]. Chongqing: Chongqing University, 2021 (in Chinese). [10] 蒋明镜, 吴 迪, 曹 培, 等. 基于SEM图片的钙质砂连通孔隙分析[J]. 岩土工程学报, 2017, 39(增刊1): 1-5. JIANG M J, WU D, CAO P, et al. Connected inner pore analysis of calcareous sands using SEM[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(supplement 1): 1-5 (in Chinese). [11] 任玉宾, 王 胤, 杨 庆. 颗粒级配与形状对钙质砂渗透性的影响[J]. 岩土力学, 2018, 39(2): 491-497. REN Y B, WANG Y, YANG Q. Effects of particle size distribution and shape on permeability of calcareous sand[J]. Rock and Soil Mechanics, 2018, 39(2): 491-497 (in Chinese). [12] COOP M R, SORENSEN K K, BODAS FREITAS T, et al. Particle breakage during shearing of a carbonate sand[J]. GÉotechnique, 2004, 54(3): 157-163. [13] 孙宗勋. 南沙群岛珊瑚砂工程性质研究[J]. 热带海洋, 2000, 19(2): 1-8. SUN Z X. Engineering properties of coral sands in Nansha Islands[J]. Tropic Oceanology, 2000, 19(2): 1-8 (in Chinese). [14] LIU R M, HOU H Y, CHEN Y Y, et al. Elastoplastic constitutive model of coral sand considering particle breakage based on unified hardening parameter[J]. Marine Georesources & Geotechnology, 2022, 40(6): 655-667. [15] 张季如, 彭伟珂, 郑颜军. K0固结珊瑚砂的应力-应变模型及变形参数研究[J]. 岩土工程学报, 2023, 45(3): 478-485. ZHANG J R, PENG W K, ZHENG Y J. Stress-strain model and deformation parameters of K0-consolidated coral sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 478-485 (in Chinese). [16] CHEN X, SHEN J H, WANG X, et al. Effect of saturation on shear behavior and particle breakage of coral sand[J]. Journal of Marine Science and Engineering, 2022, 10(9): 1280. [17] 刘 杰, 姚志华, 翁兴中, 等. 三轴剪切下珊瑚砂颗粒破碎规律及强度特征[J]. 地下空间与工程学报, 2021, 17(5): 1463-1471. LIU J, YAO Z H, WENG X Z, et al. Particles breaking regularity and strength characteristics of coral sand under triaxial shear conditions[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(5): 1463-1471 (in Chinese). [18] 梁隽灵. 基于颗粒形状和粒径微生物固化砂的物理力学特性研究[D]. 广州: 广州大学, 2022. LIANG J L. Study on physical and mechanical properties of microbial solidified sand based on particle shape and particle size[D]. Guangzhou: Guangzhou University, 2022 (in Chinese). [19] 程 壮, 侯 敏, 王剑锋. 考虑颗粒形状和破碎的胶结钙质砂力学行为离散元模拟研究[J]. 计算力学学报, 2022, 39(3): 315-323. CHENG Z, HOU M, WANG J F. Discrete element modelling of the mechanical behavior of cemented carbonate sand considering the effects of particle shape and breakage[J]. Chinese Journal of Computational Mechanics, 2022, 39(3): 315-323 (in Chinese). [20] CHEN S S, ZHANG J H, LONG Z L, et al. Effects of particle size on the particle breakage of calcareous sands under impact loadings[J]. Construction and Building Materials, 2022, 341: 127809. [21] 华 晨. 钙质砂三轴剪切过程中的颗粒破碎特性研究[D]. 武汉: 武汉理工大学, 2020. HUA C. Particle breakage characteristics of calcareous sand during triaxial shearing[D]. Wuhan: Wuhan University of Technology, 2020 (in Chinese). [22] XU D S, ZHANG Z J, QIN Y, et al. Effect of particle size on the failure behavior of cemented coral sand under impact loading[J]. Soil Dynamics and Earthquake Engineering, 2021, 149: 106884. [23] 张家铭, 汪 稔, 石祥锋, 等. 侧限条件下钙质砂压缩和破碎特性试验研究[J]. 岩石力学与工程学报, 2005, 24(18): 3327-3331. ZHANG J M, WANG R, SHI X F, et al. Compression and crushing behavior of calcareous sand under confined compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(18): 3327-3331 (in Chinese). [24] 张家铭, 张 凌, 蒋国盛, 等. 剪切作用下钙质砂颗粒破碎试验研究[J]. 岩土力学, 2008, 29(10): 2789-2793. ZHANG J M, ZHANG L, JIANG G S, et al. Research on particle crushing of calcareous sands under triaxial shear[J]. Rock and Soil Mechanics, 2008, 29(10): 2789-2793 (in Chinese). [25] 张家铭, 张 凌, 刘 慧, 等. 钙质砂剪切特性试验研究[J]. 岩石力学与工程学报, 2008, 27(增刊1): 3010-3015. ZHANG J M, ZHANG L, LIU H, et al. Experimental research on shear behavior of calcareous sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(supplement 1): 3010-3015 (in Chinese). [26] 吴 琪, 杨铮涛, 刘 抗, 等. 细粒含量对饱和珊瑚砂动力变形特性影响试验研究[J]. 岩土工程学报, 2022, 44(8): 1386-1396. WU Q, YANG Z T, LIU K, et al. Experimental study on influences of fines content on dynamic deformation characteristics of saturated coral sand[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1386-1396 (in Chinese). [27] 赵胜华, 赵艳林, 何 江, 等. 颗粒级配对南沙珊瑚砂液化特性的影响[J]. 中国科技论文, 2021, 16(4): 402-407. ZHAO S H, ZHAO Y L, HE J, et al. Influence of particle gradation on liquefaction resistance of Nansha coral sand[J]. China Sciencepaper, 2021, 16(4): 402-407 (in Chinese). [28] WANG X, WANG X Z, SHEN J H, et al. Particle size and confining-pressure effects of shear characteristics of coral sand: an experimental study[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(3): 1-25. [29] 国家市场监督管理总局. 建设用砂: GB/T 14684—2022[S]. 北京: 中国标准出版社, 2022. State Administration for Market Regulation. Sand for construction: GB/T 14684—2022[S]. Beijing: China Standards Press, 2022 (in Chinese). [30] CHEN H X, ZHANG C X, WEI J Q, et al. A modified method for estimating the stress state of granular materials in the passive confined pressure SHPB tests[J]. International Journal of Impact Engineering, 2022, 160: 104063. [31] HUANG J, XU S, HU S. Effects of grain size and gradation on the dynamic responses of quartz sands[J]. International Journal of Impact Engineering, 2013, 59: 1-10. [32] LV Y R, LI X, WANG Y. Particle breakage of calcareous sand at high strain rates[J]. Powder Technology, 2020, 366: 776-787. |