[1] 石 达, 史才军, 吴泽媚, 等. 基于水泥基材料组分的自愈合研究进展[J]. 材料导报, 2021, 35(7): 7096-7106. SHI D, SHI C J, WU Z M, et al. Advances in autogenous self-healing of cementitious materials[J]. Materials Reports, 2021, 35(7): 7096-7106 (in Chinese). [2] ZHANG W C, JU Y, ZONG Y W, et al. In situ real-time study on dynamics of microbially induced calcium carbonate precipitation at a single-cell level[J]. Environmental Science & Technology, 2018, 52(16): 9266-9276. [3] XU J, WANG X Z, WANG B B. Biochemical process of ureolysis-based microbial CaCO3 precipitation and its application in self-healing concrete[J]. Applied Microbiology and Biotechnology, 2018, 102(7): 3121-3132. [4] 钱春香, 冯建航, 苏依林. 微生物诱导碳酸钙提高水泥基材料的早期力学性能及自修复效果[J]. 材料导报, 2019, 33(12): 1983-1988. QIAN C X, FENG J H, SU Y L. Microbially induced calcium carbonate precipitation improves the early-age mechanical performance and self-healing effect of cement-based materials[J]. Materials Reports, 2019, 33(12): 1983-1988 (in Chinese). [5] 钱春香, 王安辉, 王 欣. 微生物灌浆加固土体研究进展[J]. 岩土力学, 2015, 36(6): 1537-1548. QIAN C X, WANG A H, WANG X. Advances of soil improvement with bio-grouting[J]. Rock and Soil Mechanics, 2015, 36(6): 1537-1548 (in Chinese). [6] 钱春香, 任立夫, 罗 勉. 基于微生物诱导矿化的混凝土表面缺陷及裂缝修复技术研究进展[J]. 硅酸盐学报, 2015, 43(5): 619-631. QIAN C X, REN L F, LUO M. Development of concrete surface defects and cracks repair technology based on microbial-induced mineralization[J]. Journal of the Chinese Ceramic Society, 2015, 43(5): 619-631 (in Chinese). [7] QIAN C X, ZHENG T W, RUI Y F. Living concrete with self-healing function on cracks attributed to inclusion of microorganisms: theory, technology and engineering applications: a review[J]. Science China Technological Sciences, 2021, 64(10): 2067-2083. [8] 王剑云, 钱春香, 王瑞兴, 等. 海藻酸钠固载菌株在水泥基材料表面防护中的应用研究[J]. 功能材料, 2009, 40(2): 348-351. WANG J Y, QIAN C X, WANG R X, et al. Surface protection of cement based materials by a CaCO3 layer produced by alginate-immobilized bacteria[J]. Journal of Functional Materials, 2009, 40(2): 348-351 (in Chinese). [9] WANG J Y, SOENS H, VERSTRAETE W, et al. Self-healing concrete by use of microencapsulated bacterial spores[J]. Cement and Concrete Research, 2014, 56: 139-152. [10] QURESHI T S, AL-TABBAA A. Self-healing of drying shrinkage cracks in cement-based materials incorporating reactive MgO[J]. Smart Materials and Structures, 2016, 25(8): 084004. [11] 范月东, 王玉珍, 许顺顺, 等. 基于混菌矿化增强粗骨料的再生混凝土裂缝自修复性能[J]. 硅酸盐通报, 2022, 41(2): 479-487. FAN Y D, WANG Y Z, XU S S, et al. Self-healing performance of cracks in recycled concrete based on coarse aggregates enhanced by MICP of mixed cultures of bacteria[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(2): 479-487 (in Chinese). [12] 韩强强, 路 伟, 姜 鲁, 等. 微生物菌落体系对混凝土裂缝自修复效果的影响综述[J]. 硅酸盐通报, 2022, 41(9): 2993-3007. HAN Q Q, LU W, JIANG L, et al. Review on the influence of microbial colony system on the self-healing effect of concrete cracks[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(9): 2993-3007 (in Chinese). [13] LI V C. Advances in ECC research[J]. ACI Special Publications, 2002, 206: 373-400. [14] 田佳龙. 海洋环境下ECC复合梁自愈合性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. TIAN J L. Study on self-healing performance of ECC composite beam in marine environment[D]. Harbin: Harbin Institute of Technology, 2021 (in Chinese). [15] FENG J, CHEN B C, SUN W W, et al. Microbial induced calcium carbonate precipitation study using Bacillus subtilis with application to self-healing concrete preparation and characterization[J]. Construction and Building Materials, 2021, 280: 122460. [16] CHEN B C, SUN W W, SUN X C, et al. Crack sealing evaluation of self-healing mortar with Sporosarcina pasteurii: influence of bacterial concentration and air-entraining agent[J]. Process Biochemistry, 2021, 107: 100-111. [17] SUN X C, CHEN J, LU S Y, et al. Ureolytic MICP-based self-healing mortar under artificial seawater incubation[J]. Sustainability, 2021, 13(9): 4834. [18] WANG J Y, SNOECK D, VAN V S, et al. Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete[J]. Construction and Building Materials, 2014, 68: 110-119. [19] BANG S S, GALINAT J K, RAMAKRISHNAN V. Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii[J]. Enzyme and Microbial Technology, 2001, 28(4/5): 404-409. [20] XU J, WANG X Z. Self-healing of concrete cracks by use of bacteria-containing low alkali cementitious material[J]. Construction and Building Materials, 2018, 167: 1-14. [21] WIKTOR V, JONKERS H M. Quantification of crack-healing in novel bacteria-based self-healing concrete[J]. Cement and Concrete Composites, 2011, 33(7): 763-770. [22] SU Y L, FENG J H, ZHAN Q W, et al. Non-ureolytic microbial self-repairing concrete for low temperature environment[J]. Smart Materials and Structures, 2019, 28(7): 075041. [23] 吴 洋, 练继建, 闫 玥, 等. 巴氏芽孢八叠球菌及相关微生物的生物矿化的分子机理与应用[J]. 中国生物工程杂志, 2017, 37(8): 96-103. WU Y, LIAN J J, YAN Y, et al. Mechanism and applications of bio-mineralization induced by Sporosarcina pasteurii and related microorganisms[J]. China Biotechnology, 2017, 37(8): 96-103 (in Chinese). [24] 雷东霖. 基于CT图像处理的微生物诱导加固钙质砂细观结构研究[D]. 广州: 广州大学, 2022. LEI D L. Study on microstructure of calcareous sand reinforced by microorganism based on CT image processing[D]. Guangzhou: Guangzhou University, 2022 (in Chinese). [25] CASTRO-ALONSO M J, MONTAÑEZ-HERNANDEZ L E, SANCHEZ-MUÑOZ M A, et al. Microbially induced calcium carbonate precipitation (MICP) and its potential in bioconcrete: microbiological and molecular concepts[J]. Frontiers in Materials, 2019, 6: 126. [26] 裴 迪, 刘志明, 胡碧茹, 等. 巴氏芽孢杆菌矿化作用机理及应用研究进展[J]. 生物化学与生物物理进展, 2020, 47(6): 467-482. PEI D, LIU Z M, HU B R, et al. Progress on mineralization mechanism and application research of Sporosarcina pasteurii[J]. Progress in Biochemistry and Biophysics, 2020, 47(6): 467-482 (in Chinese). [27] CHEN B C, DU L F, YUAN J, et al. A experimental study on engineered cementitious composites (ECC) incorporated with Sporosarcina pasteurii[J]. Buildings, 2022, 12(5): 691. [28] 冯 君, 陈柄丞, 卢思怡, 等. 基于生物矿化机理的自愈合混凝土制备与表征[J]. 功能材料, 2021, 52(3): 3026-3033+3042. FENG J, CHEN B C, LU S Y, et al. Preparation and characterization of self-healing concrete based on biomineralization mechanism[J]. Journal of Functional Materials, 2021, 52(3): 3026-3033+3042 (in Chinese). [29] 夏超凡, 李志华, 张 聪. 碳酸钙晶须对混杂纤维增强高延性水泥基复合材料力学性能的影响[J]. 功能材料, 2020, 51(1): 1120-1125. XIA C F, LI Z H, ZHANG C. Effect of calcium carbonate whisker on mechanical properties of hybrid fiber reinforced high ductility cementitious composites[J]. Journal of Functional Materials, 2020, 51(1): 1120-1125 (in Chinese). [30] CHAPARRO-ACUÑA S P, BECERRA-JIMÉNEZ M L, MARTÍNEZ-ZAMBRANO J J, et al. Soil bacteria that precipitate calcium carbonate: mechanism and applications of the process[J]. Acta Agronomica Sinica, 2018, 67: 277-288. [31] YOKOTA H, ROKUGO K, SAKATA N. Recommendations for design and construction of high performance fiber reinforced cement composite with multiple fine cracks[C]. Materials Science, 2008, 2. [32] MARSHALL D B, COX B N. A J-integral method for calculating steady-state matrix cracking stresses in composites[J]. Mechanics of Materials, 1988, 7(2): 127-133. [33] ZHANG D, JAWORSKA B, ZHU H, et al. Engineered cementitious composites (ECC) with limestone calcined clay cement (LC3)[J]. Cement and Concrete Composites, 2020, 114: 103766. [34] 冯 涛. 基于膨胀珍珠岩固载微生物的混凝土裂缝抗渗水性能及自修复机理分析[D]. 太原: 太原理工大学, 2018. FENG T. Analysis of water seepage resistance and self-healing mechanism of concrete cracks based on expanded perlite immobilized microorganisms[D]. Taiyuan: Taiyuan University of Technology, 2018 (in Chinese). |