[1] ROUDIER S, SANCHO L, SCALET B, et al. Best available techniques (BAT) reference document for the manufacture of glass[M]. Spain: Joint Research Centre of European Commission, 2013: 93. [2] ZIER M, STENZEL P, KOTZUR L, et al. A review of decarbonization options for the glass industry[J]. Energy Conversion and Management: X, 2021, 10: 100083. [3] SCHMITZ A, KAMIİSKI J, MARIA SCALET B, et al. Energy consumption and CO2 emissions of the European glass industry[J]. Energy Policy, 2011, 39(1): 142-155. [4] HU P P, LI Y Z, ZHANG X Z, et al. CO2 emission from container glass in China, and emission reduction strategy analysis[J]. Carbon Management, 2018, 9(3): 303-310. [5] GALITSKY C, WORRELL E, GALITSKY C, et al. Energy efficiency improvement and cost saving opportunities for the glass industry[EB/OL]. 2008-03-01. https://www.osti.gov/biblio/927883. [6] HASANBEIGI A, PRICE L, ARENS M. Emerging energy-efficiency and carbon dioxide emissions-reduction technologies for the iron and steel industry[EB/OL]. 2013-01-31. https://www.osti.gov/biblio/1172118. [7] PAPADOGEORGOS Y. Decarbonisation of the Dutch container glass industry by 2050[D]. Delft: Delft University of Technology, 2019: 37-56. [8] 严玉廷, 刘晶茹, 丁 宁, 等. 中国平板玻璃生产碳排放研究[J]. 环境科学学报, 2017, 37(8): 3213-3219. YAN Y T, LIU J R, DING N, et al. Investigation on CO2 emissions from flat glass production in China[J]. Acta Scientiae Circumstantiae, 2017, 37(8): 3213-3219 (in Chinese). [9] BEERKENS R G C, VAN LIMPT J. Energy efficiency benchmarking of glass furnaces[M]//62nd Conference on Glass Problems: Ceramic Engineering and Science Proceedings, Volume 23, Issue 1. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008: 93-105. [10] LEICHER J, MÄRTIN M, GIESE A, et al. Investigations on the use of biogas for glass melting[C]//Proceedings of the European Combustion Meeting 2015, Budapest, Hungary, Budapest, Hungary, 2015. [11] LEICHER J, GIESE A, GÖRNER K, et al. Utilization of biogas in glass melting applications[C]//Proceedings of ECOS 2015-The 28th Internationl Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Pau, France, 2015. [12] TORRIJOS M. State of development of biogas production in Europe[J]. Procedia Environmental Sciences, 2016, 35: 881-889. [13] 陈 雷, 荒木幹也, 志贺圣一, 等. 生物质燃气各组分气体燃烧与排放特性试验[J]. 农业机械学报, 2013, 44(5): 31-34. CHEN L, ARAKI M, SHIGA S, et al. Combustion and emission characteristics of individual component of biogas in SI engine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(5): 31-34 (in Chinese). [14] 孙康泰, 张 辉, 魏 珣, 等. 生物燃气产业发展现状与商业模式创新研究[J]. 林产化学与工业, 2014, 34(5): 175-180. SUN K T, ZHANG H, WEI X, et al. Review on the current situation and business model innovation of biogas industry in China[J]. Chemistry and Industry of Forest Products, 2014, 34(5): 175-180 (in Chinese). [15] 渠沛然. 生物天然气产业蓄势待发[N]. 中国能源报, 2022-06-13. QU P R. Bio-natural gas is poised to take off[N]. China Energy News, 2022-06-13 (in Chinese). [16] 马玉聪. 碳减排对平板玻璃熔化技术发展影响[J]. 玻璃, 2021, 48(4): 30-33. MA Y C. Effect of carbon emission reduction on the development of flat glass melting technology[J]. Glass, 2021, 48(4): 30-33 (in Chinese). [17] 李顶杰, 张丁南, 李红杰, 等. 中国生物柴油产业发展现状及建议[J]. 国际石油经济, 2021, 29(8): 91-98. LI D J, ZHANG D N, LI H J, et al. Development status and suggestion of biodiesel industry in China[J]. International Petroleum Economics, 2021, 29(8): 91-98 (in Chinese). [18] STEVE G, SOVACOOL BENJAMIN K, JINSOO K, et al. Industrial decarbonization via hydrogen: a critical and systematic review of developments, socio-technical systems and policy options[J]. Energy Research & Social Science, 2021, 80: 102208. [19] IRESON R, FULLER A, WOODS J, et al. Alternative fuel switching technologies for the glass sector[EB/OL]. 2019-11. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/866364/Phase_2_-_Glass_Futures_-_Fuel_Switching_Tech_for_Glass_Sector. [20] ANDREWS G E, ALTAHER M A, LI H. Hydrogen combustion at high combustor airflow using an impinging jet flame stabiliser with no flashback and low NOx[C]//Proceedings of ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, June 11-15, 2012, Copenhagen, Denmark. 2013: 1479-1489. [21] 贺有乐. 玻璃工业中天然气掺氢技术[J]. 玻璃, 2022, 49(7): 40-44. HE Y L. Technology of the mixture of natural gas and hydrogen in glass industry[J]. Glass, 2022, 49(7): 40-44 (in Chinese). [22] 刘志海. 平板玻璃行业如何从低碳走向碳中和[J]. 玻璃, 2021, 48(3): 1-5. LIU Z H. How does the flat glass industry move from low carbon to carbon neutral[J]. Glass, 2021, 48(3): 1-5 (in Chinese). [23] GARY C, RÉNE M. Electrifying glass production: a case study of supply chain innovation[EB/OL]. 2023-03-03. https://perspectives.se.com/blog-stream/electrifying-of-glass-production-a-case-study-of-supply-chain-innovation. [24] CHAN Y, PETITHUGUENIN L, FLEITER T, et al. Industrial innovation: pathways to deep decarbonisation of Industry. Part 1: technology analysis[EB/OL]. 2019-01-20. https://ec.europa.eu/clima/system/files/2019-03/industrial_innovation_part_1_en.pdf. [25] LECHTENBÖHMER S, NILSSON L J, ÅHMAN M, et al., Decarbonising the energy intensive basic materials industry through electrification: implications for future EU electricity demand[J]. Energy, 2016, 115: 1623-1631. [26] ROUDIER S, SANCHO L, SCALET B, et al., Best available techniques (BAT) reference document for the manufacture of glass[M]. Spain: Joint Research Centre of European Commission, 2013: 74. [27] WESSELING J H, LECHTENBÖHMER S, ÅHMAN M, et al., The transition of energy intensive processing industries towards deep decarbonization: Characteristics and implications for future research[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 1303-1313. [28] 王文峰. 玻璃电熔窑热过程数值模拟[D]. 包头: 内蒙古科技大学, 2020. WANG W F. Numerical simulation of heating process of glass melting furnace[D]. Baotou: Inner Mongolia University of Science & Technology, 2020 (in Chinese). [29] 王建生. 日用玻璃窑炉烟气余热回收利用技术探讨[C]. 大连: 2018年全国玻璃窑炉技术研讨交流会, 2018: 189-193. WANG J S. Discussion on the recovery and utilization technology of flue gas waste heat in daily glass furnaces[C]. Dalian: 2018 National Glass Kiln Technology Seminar, 2018: 189-193 (in Chinese). [30] KIM H, KANG T, KAISER K, et al. Heat oxy-combustion: an innovative energy saving solution for glass industry[M]//76th Conference on Glass Problems. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016: 149-155. [31] GÖRÜNEY T, ARZAN N, KOÇ S, et al. Oxy-fuel tableware furnace with novel oxygen-and natural gas preheating system[M]//77th Conference on Glass Problems. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017: 73-82. [32] 陶天训, 倪晶晶, 陈淑勇, 等. 玻璃配合料预热技术的理论与模拟分析[J]. 硅酸盐学报, 2018, 46(7): 1034-1042. TAO T X, NI J J, CHEN S Y, et al. Theoretical and simulated study of glass batch preheating[J]. Journal of the Chinese Ceramic Society, 2018, 46(7): 1034-1042 (in Chinese). [33] 曾小山, 玻璃窑炉全氧燃烧新技术: 普莱克斯OPTIMELTTMTCR技术[J]. 玻璃, 2018, 45(10): 17-21. ZENG X S. New oxy-fuel combustion technology of glass furnace-praxair OPTIMELTTM TCR technology[J]. Glass, 2018, 45(10): 17-21 (in Chinese). [34] LAUX S, IYOHA U, BELL R, et al. Advanced heat recovery for oxy-fuel fired glass furnaces with OptimeltTM plus technology[C]//77th Conference on Glass Problems. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017: 83-92. [35] 葛武军. 玻璃生产的节能减排和绿色环保[J]. 玻璃, 2017, 44(6): 41-46. GE W J. Energy saving, emission reduction and green environmental protection in glass production[J]. Glass, 2017, 44(6): 41-46 (in Chinese). [36] FEVE. Waste heat recovery technologies largely used in the European container glass industry to optimize energy consumption and reduce CO2emissions[EB/OL]. 2023-03-03. https://feve.org/case_study/waste-heat-recovery-technologies-largely-used-in-the-european-container-glass-industry-to-optimize-energy-consumption-and-reduce-CO2-emissions/. [37] 曾雄伟, 赵恩录, 张文玲, 等. 浮法玻璃配合料粒化的研究[J]. 玻璃, 2007, 34(6): 14-16. ZENG X W, ZHAO E L, ZHANG W L, et al. Research of float glass coordination material granulation[J]. Glass, 2007, 34(6): 14-16 (in Chinese). [38] 赵彦林. 玻璃配合料的润湿[J]. 玻璃纤维, 1990(2): 48+46. ZHAO Y L. Wetting of glass batch[J]. Fiber Glass, 1990(2): 48+46 (in Chinese). [39] BEERKENS R. Energy balances of glass furnaces: parameters determining energy consumption of glass melt processes[C]. Columbu: 67th Conference on Glass Problems, 2007: 102-116. [40] HANS VAN LIMPT R B, ANDRIES HABRAKEN. Overview of methods to recover energy from flue gases of glass furnaces-Impact on glass furnace energy consumption[EB/OL]. 2023-03-03. https://www.yumpu.com/en/document/read/11461820/overview-of-methods-to-recover-energy-from-flue-glasstrend. [41] 叶 瀚, 程 亮, 王志瑞, 等. 玻璃配合料粒化的研究现状[J]. 玻璃, 2014, 41(10): 37-39. YE H, CHENG L, WANG Z R, et al. The research status of float glass batch granulation[J]. Glass, 2014, 41(10): 37-39 (in Chinese). [42] 张艳娟, 姚 佩, 李红霞, 等. 浅谈玻璃熔制的节能降耗[J]. 玻璃, 2014, 41(4): 18-21. ZHANG Y J, YAO P, LI H X, et al. Introduction of energy saving and consumption reducing in glass batch melted[J]. Glass, 2014, 41(4): 18-21 (in Chinese). [43] 赵恩录. 玻璃熔窑全氧燃烧技术及发展方向[J]. 玻璃, 2021, 48(10): 68-72. ZHAO E L. Oxy-fuel combustion technology and development direction of glass melting furnace[J]. Glass, 2021, 48(10): 68-72 (in Chinese). [44] RUE D, BROWN J T. Submerged combustion melting of glass[J]. International Journal of Applied Glass Science, 2011, 2(4): 262-274. [45] EERE P. Energy-efficient glass melting: Submerged combustion[EB/OL]. 2004-01-01. https://www.osti.gov/biblio/1216207. [46] STORMONT R. Electric melting and boosting for glass quality improvement[EB/OL]. 2010-09-10. http://www.electroglass.co.uk/articles/2010-09%20Electric%20Melting%20%26%20Boosting%20for%20Glass%20Quality%20Improvement.pdf. [47] SEO K, EDGAR T F, BALDEA M. Optimal demand response operation of electric boosting glass furnaces[J]. Applied Energy, 2020, 269: 115077. [48] 刘志海,李 超, 浮法玻璃工艺手册[M]. 北京: 化学工业出版社, 2013. LIU Z H, LI C. Float glass process manual[M]. Beijing: Chemical Industry Press, 2013 (in Chinese). [49] FEVE. Glass is a permanent material, endlessly recyclable[EB/OL]. 2023-03-03. https://feve.org/case_study/glass-is-a-permanent-material-endlessly-recyclable/. [50] GRAEME DEBRINCAT E B. Re-thinking the life-cycle of architectural glass[EB/OL]. 2023-03-03. https://www.arup.com/perspectives/publications/research/section/re-thinking-the-life-cycle-of-architectural-glass. [51] GUO P W, MENG W N, NASSIF H, et al. New perspectives on recycling waste glass in manufacturing concrete for sustainable civil infrastructure[J]. Construction and Building Materials, 2020, 257: 119579. [52] MAIER P L, DURHAM S A. Beneficial use of recycled materials in concrete mixtures[J]. Construction and Building Materials, 2012, 29: 428-437. [53] BEERKENS R, KERS G, VAN SANTEN E. Recycling of post-consumer glass: energy savings, CO2 emission reduction, effects on glass quality and glass melting[M]//71st Conference on Glass Problems. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011: 167-194. [54] 段永华. 水泥工业富氧燃烧CO2捕集技术的理论和试验研究[D]. 西安: 西安建筑科技大学, 2015. DUAN Y H. Theoretical and experimental study on oxygen enriched combustion technology in cement industry[D]. Xi’an: Xi’an University of Architecture and Technology, 2015 (in Chinese). [55] BUDINIS S, KREVOR S, MAC DOWELL N, et al. An assessment of CCS costs, barriers and potential[J]. Energy Strategy Reviews, 2018, 22: 61-81. [56] ZHAO T, LIU Z X. A novel analysis of carbon capture and storage (CCS) technology adoption: an evolutionary game model between stakeholders[J]. Energy, 2019, 189: 116352. [57] EUROPE G F. Flat glass in climate-neutral Europe: triggering a virtuous cycle of decarbonisation[EB/OL]. 2020-02-06. https://glassforeurope.com/wp-content/uploads/2020/01/flat-glass-climate-neutral-europe.pdf. [58] FURSZYFER DEL RIO D D, SOVACOOL B K, FOLEY A M, et al., Decarbonizing the glass industry: a critical and systematic review of developments, sociotechnical systems and policy options[J]. Renewable and Sustainable Energy Reviews, 2022, 155: 111885. [59] 唐福恒. 玻璃熔窑蓄热室设计[J]. 玻璃, 2018, 45(12): 1-23. TANG F H. Design of regenerator of glass melting furnace[J]. Glass, 2018, 45(12): 1-23 (in Chinese). |