[1] SINGH A, SAMPATH P V, BILIGIRI K P. A review of sustainable pervious concrete systems: emphasis on clogging, material characterization, and environmental aspects[J]. Construction and Building Materials, 2020, 261: 120491. [2] 黄 维, 秦子然, 曲余玲, 等. 2021年钢铁行业运行分析与2022年展望[J]. 冶金经济与管理, 2022(1): 19-21. HUANG W, QIN Z R, QU Y L, et al. Situation analysis of iron and steel industry in 2021 and prospect in 2022[J]. Yejin Jingji Yu Guanli, 2022(1): 19-21 (in Chinese). [3] DONG Q, WANG G T, CHEN X Q, et al. Recycling of steel slag aggregate in Portland cement concrete: an overview[J]. Journal of Cleaner Production, 2021, 282: 124447. [4] 王 强. 钢渣的胶凝性能及在复合胶凝材料水化硬化过程中的作用[D]. 北京: 清华大学, 2010. WANG Q. Cementitious properties of steel slag and its role in the hydration and hardening process of complex binder[D]. Beijing: Tsinghua University, 2010 (in Chinese). [5] OGE M, OZKAN D, CELIK M B, et al. An overview of utilization of blast furnace and steelmaking slag in various applications[J]. Materials Today: Proceedings, 2019, 11: 516-525. [6] 邹 敏, 沈 玉, 刘娟红. 钢渣粉在水泥基材料中应用研究综述[J]. 硅酸盐通报, 2021, 40(9): 2964-2977. ZOU M, SHEN Y, LIU J H. Review on application of steel slag powder in cement-based materials[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(9): 2964-2977 (in Chinese). [7] 张同生, 刘福田, 李义凯, 等. 激发剂对钢渣胶凝材料性能的影响[J]. 建筑材料学报, 2008, 11(4): 469-474. ZHANG T S, LIU F T, LI Y K, et al. Influence of activators on the properties of steel slag cementitious materials[J]. Journal of Building Materials, 2008, 11(4): 469-474 (in Chinese). [8] 吴 旻, 谢胜华, 葛根旺. 碱激发钢渣矿渣复合基层材料的强度特性及微观机制[J]. 硅酸盐通报, 2021, 40(8): 2640-2646. WU M, XIE S H, GE G W. Strength characteristics and micro-mechanism of alkali-activated steel slag-blast furnace slag road base composite material[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(8): 2640-2646 (in Chinese). [9] 刘淑贤, 苏 严, 杨 敏, 等. 钢渣-矿渣复合胶凝材料的制备及胶凝活性激发试验研究[J]. 金属矿山, 2022, 557(11): 252-258. LIU S X, SU Y, YANG M, et al. Experimental study on preparation of the steel slag and slag composite cementitious material and its gelling activity inspiration[J]. Metal Mine, 2022, 557(11): 252-258 (in Chinese). [10] 王梦琪, 王路明, 蔡树元, 等. 无机激发剂对碱矿渣-钢渣胶凝材料抗压强度的影响[J]. 混凝土, 2020(7): 84-87. WANG M Q, WANG L M, CAI S Y, et al. Effect of inorganic activator on compressive strength of alkali slag-steel slag cementitious materials[J]. Concrete, 2020(7): 84-87 (in Chinese). [11] COLLINS F, SANJAYAN J G. Effect of pore size distribution on drying shrinking of alkali-activated slag concrete[J]. Cement and Concrete Research, 2000, 30(9): 1401-1406. [12] ALIZADEH R, CHINI M, GHODS P, et al. Utilization of electric arc furnace slag as aggregates in concrete-environmental issue[C]//Proceedings of the 6th CANMET/ACI international conference on recent advances in concrete technology. Bucharest, Romania. 2003: 451-464. [13] CUI P D, WU S P, XIAO Y, et al. Enhancement mechanism of skid resistance in preventive maintenance of asphalt pavement by steel slag based on micro-surfacing[J]. Construction and Building Materials, 2020, 239: 117870. [14] LANG L, DUAN H J, CHEN B. Properties of pervious concrete made from steel slag and magnesium phosphate cement[J]. Construction and Building Materials, 2019, 209: 95-104. [15] SAXENA S, TEMBHURKAR A R. Developing biotechnological technique for reuse of wastewater and steel slag in bio-concrete[J]. Journal of Cleaner Production, 2019, 229: 193-202. [16] LYU K, SHE W, CHANG H L, et al. Effect of fine aggregate size on the overlapping of interfacial transition zone (ITZ) in mortars[J]. Construction and Building Materials, 2020, 248: 118559. [17] GARBOCZI E J, BENTZ D P. Analytical formulas for interfacial transition zone properties[J]. Advanced Cement Based Materials, 1997, 6(3): 99-108. [18] WANG S X, ZHANG G F, WANG B, et al. Mechanical strengths and durability properties of pervious concretes with blended steel slag and natural aggregate[J]. Journal of Cleaner Production, 2020, 271:122590. [19] SUN K K, PENG X Q, CHU S H, et al. Utilization of BOF steel slag aggregate in metakaolin-based geopolymer[J]. Construction and Building Materials, 2021, 300: 124024. [20] 钱觉时, 余金城, 孙化强, 等. 钙矾石的形成与作用[J]. 硅酸盐学报, 2017, 45(11): 1569-1581. QIAN J S, YU J C, SUN H Q, et al. Formation and function of ettringite in cement hydrates[J]. Journal of the Chinese Ceramic Society, 2017, 45(11): 1569-1581 (in Chinese). [21] 刘 燚. 碳激发钢渣生态透水混凝土的制备与研究[D]. 武汉: 武汉理工大学, 2018. LIU Y. Study on the preparation of ecological pervious concrete with carbon-activated steel slag[D]. Wuhan: Wuhan University of Technology, 2018 (in Chinese). [22] 范昭昂, 岳公冰, 罗金垒, 等. 激发剂对掺合料-高贝利特硫铝酸盐水泥砂浆性能的影响[J]. 混凝土与水泥制品, 2022(10): 32-35+39. FAN Z A, YUE G B, LUO J L, et al. Effect of activator on properties of high belite sulphoaluminate cement mortar with admixture[J]. China Concrete and Cement Products, 2022(10): 32-35+39 (in Chinese). [23] 徐玲琳, 王培铭, 张国防, 等. 石膏种类对硅酸盐-铝酸盐混合水泥强度的影响机理[J]. 硅酸盐学报, 2013, 41(11): 1499-1506. XU L L, WANG P M, ZHANG G F, et al. Influence mechanism of calcium sulfate variety on strength of Portland cement-calcium aluminate cement blends[J]. Journal of the Chinese Ceramic Society, 2013, 41(11): 1499-1506 (in Chinese). |