[1] 郭 正, 刘百宽, 田晓利, 等. 不同活性MgO对高钙镁钙耐火材料性能的影响[J]. 硅酸盐通报, 2015, 34(11): 3390-3393+3404. GUO Z, LIU B K, TIAN X L, et al. Effect of different activities of MgO on the performance of MgO-CaO refractories with high calcium composition[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(11): 3390-3393+3404 (in Chinese). [2] 高刚毅, 周江波, 韦家向. 镍基高温合金GH4099的研究现状及发展趋势[J]. 特钢技术, 2022, 28(1): 1-5. GAO G Y, ZHOU J B, WEI J X. Research status and development trend of nickel base superalloy GH4099[J]. Special Steel Technology, 2022, 28(1): 1-5 (in Chinese). [3] 许志强, 左海滨, 刘林程. 铝碳质耐火材料研究进展及展望[J]. 硅酸盐通报, 2021, 40(2): 664-675. XU Z Q, ZUO H B, LIU L C. Research and prospect of alumina-carbon refractories[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(2): 664-675 (in Chinese). [4] 张轶波, 郑 亮, 许文勇, 等. 莫来石基耐火材料夹杂物与粉末冶金高温合金FGH96界面反应[J]. 航空材料学报, 2022, 42(2): 20-28. ZHANG Y B, ZHENG L, XU W Y, et al. Interfacial reaction between mullite-based inclusions and PM superalloy FGH96[J]. Journal of Aeronautical Materials, 2022, 42(2): 20-28 (in Chinese). [5] 程水明, 赵惠忠, 王 宇. 高品质钢冶炼出铁场耐火材料结合剂的研究进展[J]. 钢铁研究学报, 2022, 34(1): 3-11. CHENG S M, ZHAO H Z, WANG Y. Research progress on binding agents for refractories used in high-quality steel smelting cast-house[J]. Journal of Iron and Steel Research, 2022, 34(1): 3-11 (in Chinese). [6] LI B R, WEI Y W, WANG J H, et al. Improved hydration resistance of CaO granules via sol-processed metal oxide protective layers[J]. Journal of the American Ceramic Society, 2021, 104(9): 4878-4890. [7] 万伟伟. CaO陶瓷的制备及其结构与性能的研究[D]. 武汉: 武汉理工大学, 2011. WAN W W. The preparation of CaO ceramic and the study on the structure and properties[D]. Wuhan: Wuhan University of Technology, 2011 (in Chinese). [8] 于秋月. MgO-CaO耐火材料抗水化性能研究进展[J]. 有色矿冶, 2018, 34(2): 39-42. YU Q Y. Progress in research on hydration resistance of MgO-CaO refractories[J]. Non-Ferrous Mining and Metallurgy, 2018, 34(2): 39-42 (in Chinese). [9] 王宏联, 崔庆阳, 薛群虎, 等. CaO耐火材料抗水化性的研究进展[J]. 材料导报, 2009, 23(s1): 510-512+516. WANG H L, CUI Q Y, XUE Q H, et al. Review of research development of hydration resistance of calcium oxide refractories[J]. Materials Review, 2009, 23(s1): 510-512+516 (in Chinese). [10] LIU H L, LIU C J, JIANG M F. Effect of rare earths on impact toughness of a low-carbon steel[J]. Materials & Design, 2012, 33: 306-312. [11] 程建忠, 车丽萍. 中国稀土资源开采现状及发展趋势[J]. 稀土, 2010, 31(2): 65-69+85. CHENG J Z, CHE L P. Current mining situation and potential development of rare earth in China[J]. Chinese Rare Earths, 2010, 31(2): 65-69+85 (in Chinese). [12] 范李鹏, 李宝辉, 王宝兵, 等. 钛合金熔模铸造用新型氧化钇涂料的制备及其性能研究[J]. 铸造, 2016, 65(12): 1189-1191+1197. FAN L P, LI B H, WANG B B, et al. Preparation and properties of novel yttria coating for titanium alloy investment casting[J]. Foundry, 2016, 65(12): 1189-1191+1197 (in Chinese). [13] LIN C C, CHANG Y W, LIN K L, et al. Effect of yttria on interfacial reactions between titanium melt and hot-pressed yttria/zirconia composites at 1700℃[J]. Journal of the American Ceramic Society, 2008, 91(7): 2321-2327. [14] 鲁 飞, 刘树峰, 孙良成, 等. 氧化钇陶瓷的热压烧结和耐蚀行为[J]. 稀土, 2016, 37(5): 142-146. LU F, LIU S F, SUN L C, et al. Hot-press sintering and corrosion resistance behavior of yttria ceramic[J]. Chinese Rare Earths, 2016, 37(5): 142-146 (in Chinese). [15] XIANG G T, LIU X T, LIU W, et al. Multifunctional optical thermometry based on the stark sublevels of Er3+ in CaO-Y2O3: Yb3+/Er3+[J]. Journal of the American Ceramic Society, 2020, 103(4): 2540-2547. |