[1] HE S C, JIANG D Y, HONG M H, et al. Hazard-free treatment and resource utilisation of electrolytic Manganese residue: a review[J]. Journal of Cleaner Production, 2021, 306: 127224. [2] WANG D Q, WANG Q, XUE J F. Reuse of hazardous electrolytic Manganese residue: detailed leaching characterization and novel application as a cementitious material[J]. Resources, Conservation and Recycling, 2020, 154: 104645. [3] SHU J C, WU H P, LIU R L, et al. Simultaneous stabilization/solidification of Mn2+ and NH4+-N from electrolytic manganese residue using MgO and different phosphate resource[J]. Ecotoxicology and Environmental Safety, 2018, 148: 220-227. [4] SHU J C, LI B, CHEN M J, et al. An innovative method for Manganese (Mn2+) and ammonia nitrogen (NH4+-N) stabilization/solidification in electrolytic manganese residue by basic burning raw material[J]. Chemosphere, 2020, 253: 126896. [5] ZHOU Y X. Reusing electrolytic manganese residue as an activator: the effect of calcination on its mineralogy and activity[J]. Construction and Building Materials, 2021, 294: 123533. [6] 徐金荣. 电解锰渣无害化处理技术及资源化利用研究进展[J]. 中国锰业, 2020, 38(6): 1-6. XU J R. A research progress on harmless treatment technology and resource utilization of electrolytic Manganese residue[J]. China's Manganese Industry, 2020, 38(6): 1-6 (in Chinese). [7] 孙 俊, 饶 帅, 王东兴, 等. 硫酸-方铅矿体系高效浸出电解锰渣[J]. 中南大学学报(自然科学版), 2021, 52(11): 3800-3812. SUN J, RAO S, WANG D X, et al. High-efficiency leaching of electrolytic Manganese residues in sulfuric acid-galena system[J]. Journal of Central South University (Science and Technology), 2021, 52(11): 3800-3812 (in Chinese). [8] ZHANG Y L, LIU X M, XU Y T, et al. Preparation and characterization of cement treated road base material utilizing electrolytic manganese residue[J]. Journal of Cleaner Production, 2019, 232: 980-992. [9] ZHANG Y L, LIU X M, XU Y T, et al. Preparation of road base material by utilizing electrolytic Manganese residue based on Si-Al structure: mechanical properties and Mn2+ stabilization/solidification characterization[J]. Journal of Hazardous Materials, 2020, 390: 122188. [10] MALDONADO-ALAMEDA A, GIRO-PALOMA J, SVOBODOVA-SEDLACKOVA A, et al. Municipal solid waste incineration bottom ash as alkali-activated cement precursor depending on particle size[J]. Journal of Cleaner Production, 2020, 242: 118443. [11] ZHANG H X, SHIMAOKA T. Formation of humic substances in weathered MSWI bottom ash[J]. The Scientific World Journal, 2013, 2013: 1-5. [12] SPREADBURY C J, MCVAY M, LAUX S J, et al. A field-scale evaluation of municipal solid waste incineration bottom ash as a road base material: considerations for reuse practices[J]. Resources, Conservation and Recycling, 2021, 168: 105264. [13] LIN C L, WENG M C, CHANG C H. Effect of incinerator bottom-ash composition on the mechanical behavior of backfill material[J]. Journal of Environmental Management, 2012, 113: 377-382. [14] BACK S, SAKANAKURA H. Distribution of recoverable metal resources and harmful elements depending on particle size and density in municipal solid waste incineration bottom ash from dry discharge system[J]. Waste Management, 2021, 126: 652-663. [15] HUBER F, BLASENBAUER D, ASCHENBRENNER P, et al. Chemical composition and leachability of differently sized material fractions of municipal solid waste incineration bottom ash[J]. Waste Management, 2019, 95: 593-603. [16] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 生活垃圾焚烧炉渣集料: GB/T 25032—2010[S]. 北京: 中国标准出版社, 2011. General Administration of Quality Supervision, Inspection and Quarantine, China National Standardization Management Committee. Domestic waste incinerator slag aggregate: GB/T 25032—2010[S]. Beijing: China Standard Press, 2011 (in Chinese). [17] 张 娜, 刘晓明, 孙恒虎. 赤泥-煤矸石基中钙体系胶凝材料的水化特性[J]. 材料研究学报, 2014, 28(5): 325-332. ZHANG N, LIU X M, SUN H H. Hydration characteristics of intermediate-calcium based cementitious materials from red mud and coal gangue[J]. Chinese Journal of Materials Research, 2014, 28(5): 325-332 (in Chinese). [18] LIU X M, ZHAO X B, YIN H F, et al. Intermediate-calcium based cementitious materials prepared by MSWI fly ash and other solid wastes: hydration characteristics and heavy metals solidification behavior[J]. Journal of Hazardous Materials, 2018, 349: 262-271. [19] 中华人民共和国交通运输部. 公路工程无机结合料稳定材料试验规程: JTG E51—2009[S]. 北京: 人民交通出版社, 2009. Ministry of Transport of the People's Republic of China. Test procedures for inorganic binder stabilized materials for highway engineering: JTG E51—2009[S]. Beijing: People's Transportation Publishing House, 2009 (in Chinese). [20] 中华人民共和国住房和城乡建设部. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for geotechnical test methods: GB/T 50123—2019[S]. Beijing: China Plan Press, 2019 (in Chinese). [21] 中华人民共和国交通运输部. 公路土工试验规程: JTG 3430—2020[S]. 北京: 人民交通出版社, 2020 Ministry of Transport of the People's Republic of China. Highway geotechnical test procedures: JTG 3430—2020[S]. Beijing: People's Transportation Publishing House, 2020 (in Chinese). [22] HOY M, RACHAN R, HORPIBULSUK S, et al. Effect of wetting-drying cycles on compressive strength and microstructure of recycled asphalt pavement-fly ash geopolymer[J]. Construction and Building Materials, 2017, 144: 624-634. [23] 国家环境保护总局. 固体废物 浸出毒性浸出方法 硫酸硝酸法: HJ/T 299—2007[S]. 北京: 中国环境科学出版社, 2007. State Environmental Protection Administration. Solid waste leaching toxicity leaching method-sulfuric acid nitric acid method: HJ/T 299—2007[S]. Beijing: China Environmental Science Press, 2007 (in Chinese). [24] ZHANG Y L, LIU X M, XU Y T, et al. Synergic effects of electrolytic manganese residue-red mud-carbide slag on the road base strength and durability properties[J]. Construction and Building Materials, 2019, 220: 364-374. [25] 王东星, 张子伟, 王协群, 等. 干湿-冻融循环作用下水泥改性膨胀土的路用性能与微观机制[J]. 中南大学学报(自然科学版), 2022, 53(1): 306-316. WANG D X, ZHANG Z W, WANG X Q, et al. Performance and micromechanism of cement-modified expansive soils under the influence of freeze-thaw and dry-wet cycles[J]. Journal of Central South University (Science and Technology), 2022, 53(1): 306-316 (in Chinese). [26] 中华人民共和国交通运输部. 公路路面基层施工技术细则: JTG/T F20—2015[S]. 北京: 人民交通出版社, 2015. Ministry of Transport of the People's Republic of China. Technical rules for construction of highway pavement base: JTG/T F20—2015[S]. Beijing: People's Traffic Press, 2015 (in Chinese). [27] LI Y, LIU X M, LI Z P, et al. Preparation, characterization and application of red mud, fly ash and desulfurized gypsum based eco-friendly road base materials[J]. Journal of Cleaner Production, 2021, 284: 124777. [28] 闫国孟, 彭 兵, 柴立元, 等. 锰渣的理化特性及煅烧特性[J]. 中南大学学报(自然科学版), 2015, 46(7): 2419-2425. YAN G M, PENG B, CHAI L Y, et al. Physicochemical and calcination characteristics of Manganese residue[J]. Journal of Central South University (Science and Technology), 2015, 46(7): 2419-2425 (in Chinese). [29] 张杜超, 任冠行, 刘若麟, 等. 硫酸铵焙烧法选择性分离锌浸出渣中的锌和铁[J]. 中国有色金属学报, 2021, 31(7): 1944-1951. ZHANG D C, REN G X, LIU R L, et al. Selective separation of zinc and iron from zinc leaching residue by ammonium sulfate roasting[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(7): 1944-1951 (in Chinese). [30] LAN J R, SUN Y, TIAN H, et al. Electrolytic manganese residue-based cement for manganese ore pit backfilling: performance and mechanism[J]. Journal of Hazardous Materials, 2021, 411: 124941. [31] XUE F, WANG T, ZHOU M, et al. Self-solidification/stabilisation of electrolytic manganese residue: mechanistic insights[J]. Construction and Building Materials, 2020, 255: 118971. [32] MUKIZA E, LIU X M, ZHANG L L, et al. Preparation and characterization of a red mud-based road base material: strength formation mechanism and leaching characteristics[J]. Construction and Building Materials, 2019, 220: 297-307. |