[1] 赵立文, 朱干宇, 李少鹏, 等. 电石渣特性及综合利用研究进展[J]. 洁净煤技术, 2021, 27(3): 13-26. ZHAO L W, ZHU G Y, LI S P, et al. Research progress on characteristics and comprehensive utilization of calcium carbide slag[J]. Clean Coal Technology, 2021, 27(3): 13-26 (in Chinese). [2] 曹春霞, 王 波, 成怀刚, 等. 电石渣及二氧化碳资源化利用现状与展望[J]. 化工矿物与加工, 2022, 51(2): 1-9. CAO C X, WANG B, CHENG H G, et al. The status and outlook of the resource utilization of calcium carbide slag and carbon dioxide[J]. Industrial Minerals & Processing, 2022, 51(2): 1-9 (in Chinese). [3] DAVIDOVITS J. Geopolymers and geopolymeric materials[J]. Journal of Thermal Analysis, 1989, 35(2): 429-441. [4] 赵献辉, 王浩宇, 周博宇, 等. 粉煤灰基地聚物的性能影响因素及其凝胶产物研究进展[J]. 硅酸盐通报, 2021, 40(3): 867-876. ZHAO X H, WANG H Y, ZHOU B Y, et al. Research development on influencing factors of performances and gel products in fly ash-based geopolymer material[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(3): 867-876 (in Chinese). [5] SOUTSOS M, BOYLE A P, VINAI R, et al. Factors influencing the compressive strength of fly ash based geopolymers[J]. Construction and Building Materials, 2016, 110: 355-368. [6] ASSI L N, DEAVER E E, ELBATANOUNY M K, et al. Investigation of early compressive strength of fly ash-based geopolymer concrete[J]. Construction and Building Materials, 2016, 112: 807-815. [7] NATH P, SARKER P K. Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition[J]. Construction and Building Materials, 2014, 66: 163-171. [8] PHOO-NGERNKHAM T, PHIANGPHIMAI C, INTARABUT D, et al Low cost and sustainable repair material made from alkali-activated high-calcium fly ash with calcium carbide residue[J]. Construction and Building Materials, 2020, 247: 118543. [9] MEESALA C R, VERMA N K, KUMAR S. Critical review on fly-ash based geopolymer concrete[J]. Structural Concrete, 2020, 21(3): 1013-1028. [10] 陈 晨, 程 婷, 贡伟亮, 等. 粉煤灰地聚物反应体系下的反应动力学研究[J]. 硅酸盐通报, 2016, 35(9): 2717-2723. CHEN C, CHENG T, GONG W L, et al. Reaction kinetics of fly ash based geopolymer systems[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(9): 2717-2723 (in Chinese). [11] 段玉杰, 周 伟, 姬 翔, 等. 水固比对溶胶-凝胶法合成地聚物性能的影响[J]. 水力发电学报, 2020, 39(1): 102-109. DUAN Y J, ZHOU W, JI X, et al. Effect of water-solid ratio on geopolymer synthesized using sol-gel method[J]. Journal of Hydroelectric Engineering, 2020, 39(1): 102-109 (in Chinese). [12] 刘进琪, 王世玉, 彭 晖, 等. 碱激发剂对粉煤灰基地聚物性能影响研究[J]. 交通科学与工程, 2020, 36(3): 8-13. LIU J Q, WANG S Y, PENG H, et al. Study on the effect of alkali activator on the properties of fly ash-based geopolymer[J]. Journal of Transport Science and Engineering, 2020, 36(3): 8-13 (in Chinese). [13] 丁兆洋, 苏 群, 李明泽, 等. 水玻璃模数对地聚物再生混凝土力学性能影响[J/OL]. 建筑材料学报, 2022: 1-13 (2022-03-08) [2022-10-20]. https://kns.cnki.net/kcms/detail/31.1764.TU.20220307.0902.002.html. DING Z Y, SU Q, LI M Z, et al. Water-glass modulus on mechanical properties of geopolymer recycled aggregate concrete[J/OL]. Journal of Building Materials, 2022: 1-13 (2022-03-08) [2022-10-20]. https://kns.cnki.net/kcms/detail/31.1764.TU.20220307.0902.002.html (in Chinese). [14] 彭 晖, 崔 潮, 蔡春声, 等. 激发剂浓度对偏高岭土基地聚物性能的影响机制[J]. 复合材料学报, 2016, 33(12): 2952-2960. PENG H, CUI C, CAI C S, et al. Mechanism of activator concentration influencing properties of metakaolin-based geopolymer[J]. Acta Materiae Compositae Sinica, 2016, 33(12): 2952-2960 (in Chinese). [15] CHEN K L, LIN W T, LIU W D. Effect of NaOH concentration on properties and microstructure of a novel reactive ultra-fine fly ash geopolymer[J]. Advanced Powder Technology, 2021, 32(8): 2929-2939. [16] PHETCHUAY C, HORPIBULSUK S, SUKSIRIPATTANAPONG C, et al. Calcium carbide residue: alkaline activator for clay-fly ash geopolymer[J]. Construction and Building Materials, 2014, 69: 285-294. [17] MA X Q, ZHAO M Q, CHEN D J, et al. Preparation of a novel composite geopolymer based on calcium carbide slag-fly ash and its characterization, mechanism and adsorption properties[J]. Water Science and Technology, 2022, 85(8): 2389-2397. [18] 万宗华, 张文芹, 刘志超, 等. 电石渣-矿渣复合胶凝材料性能研究[J]. 硅酸盐通报, 2022, 41(5): 1704-1714. WAN Z H, ZHANG W Q, LIU Z C, et al. Properties of carbide slag-slag composite cementitious material[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(5): 1704-1714 (in Chinese). [19] 夏琳玲, 吴大志, 陈柯宇. 粉煤灰基地质聚合物的性能研究及机理分析[J]. 水利规划与设计, 2021(4): 79-82+132+137. XIA L L, WU D Z, CHEN K Y. Study on properties and mechanism of fly ash based geopolymer[J]. Water Resources Planning and Design, 2021(4): 79-82+132+137 (in Chinese). [20] 施惠生, 夏 明, 郭晓潞. 粉煤灰基地聚合物反应机理及各组分作用的研究进展[J]. 硅酸盐学报, 2013, 41(7): 972-980. SHI H S, XIA M, GUO X L. Research development on mechanism of fly ash-based geopolymer and effect of each component[J]. Journal of the Chinese Ceramic Society, 2013, 41(7): 972-980 (in Chinese). [21] ZHANG M H, LI H. Pore structure and chloride permeability of concrete containing nano-particles for pavement[J]. Construction and Building Materials, 2011, 25(2): 608-616. |