[1] 郭跃飞, 王观次, 尹鸿达, 等. 纤维增强地质聚合物复合材料性能研究进展[J]. 市政技术, 2022, 40(4): 89-94. GUO Y F, WANG G C, YIN H D, et al. Research on properties of fiber-reinforced geopolymer composites[J]. Journal of Municipal Technology, 2022, 40(4): 89-94 (in Chinese). [2] FARHAN N A, SHEIKH M N, HADI M N S. Investigation of engineering properties of normal and high strength fly ash based geopolymer and alkali-activated slag concrete compared to ordinary Portland cement concrete[J]. Construction and Building Materials, 2019, 196: 26-42. [3] SARKER P K, HAQUE R, RAMGOLAM K V. Fracture behaviour of heat cured fly ash based geopolymer concrete[J]. Materials & Design, 2013, 44: 580-586. [4] OHNO M, LI V C. A feasibility study of strain hardening fiber reinforced fly ash-based geopolymer composites[J]. Construction and Building Materials, 2014, 57: 163-168. [5] 姚智高, 林 常, 蔡 舒, 等. 粉煤灰对PVA纤维/水泥基体界面作用及复合材料拉伸性能的影响[J]. 硅酸盐通报, 2022, 41(7): 2327-2336. YAO Z G, LIN C, CAI S, et al. Effect of fly ash on PVA fiber/cementitious matrix interfacial interactions and tensile properties of composites[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(7): 2327-2336 (in Chinese). [6] 杨 剑, 滕凤恩. 纳米材料综述[J]. 材料导报, 1997, 11(2): 6-10. YANG J, TENG F E. The summary of nanocrystalline materials[J]. Materials Review, 1997, 11(2): 6-10 (in Chinese). [7] BALAPOUR M, JOSHAGHANI A, ALTHOEY F. Nano-SiO2 contribution to mechanical, durability, fresh and microstructural characteristics of concrete: a review[J]. Construction and Building Materials, 2018, 181: 27-41. [8] RONG Z D, SUN W, XIAO H J, et al. Effects of nano-SiO2 particles on the mechanical and microstructural properties of ultra-high performance cementitious composites[J]. Cement and Concrete Composites, 2015, 56: 25-31. [9] YU J, ZHANG M, LI G Y, et al. Using nano-silica to improve mechanical and fracture properties of fiber-reinforced high-volume fly ash cement mortar[J]. Construction and Building Materials, 2020, 239: 117853. [10] 徐 晶, 王先志. 纳米二氧化硅对混凝土界面过渡区的改性机制及其多尺度模型[J]. 硅酸盐学报, 2018, 46(8): 1053-1058. XU J, WANG X Z. Effect of nano-silica modification on interfacial transition zone in concrete and its multiscale modelling[J]. Journal of the Chinese Ceramic Society, 2018, 46(8): 1053-1058 (in Chinese). [11] 张 鹏, 赵燕坤, 焦美菊, 等. 纳米SiO2和PVA纤维增强地聚合物砂浆断裂能研究[J]. 土木工程与管理学报, 2019, 36(5): 68-72+89. ZHANG P, ZHAO Y K, JIAO M J, et al. Reaserch on fracture energy of nano-SiO2 and PVA fiber reinforced geopolymer mortar[J]. Journal of Civil Engineering and Management, 2019, 36(5): 68-72+89 (in Chinese). [12] 张秀芝, 刘明乐, 杜笑寒, 等. 纳米SiO2与粉煤灰协同改性水泥基材料性能研究[J]. 材料导报, 2017, 31(24): 50-55+62. ZHANG X Z, LIU M L, DU X H, et al. Synergistic effect of nano silica and fly ash on the cement-based materials[J]. Materials Review, 2017, 31(24): 50-55+62 (in Chinese). [13] DING C, GUO L P, CHEN B, et al. Micromechanics theory guidelines and method exploration for surface treatment of PVA fibers used in high-ductility cementitious composites[J]. Construction and Building Materials, 2019, 196: 154-165. [14] 张 贵, 朋改非, 类泽灏, 等. 基于聚乙烯纤维表面改性的超高性能混凝土应变硬化机理[J]. 硅酸盐学报, 2021, 49(11): 2346-2354. ZHANG G, PENG G F, LEI Z H, et al. Strain-hardening mechanism of ultra-high performance concrete based on polyethylene fiber surface modification[J]. Journal of the Chinese Ceramic Society, 2021, 49(11): 2346-2354 (in Chinese).[15] 范 杰, 李庚英, 熊光晶, 等. 聚乙烯醇改性水泥砂浆的断裂性能[J]. 建筑材料学报, 2016, 19(2): 336-341+358. FAN J, LI G Y, XIONG G J, et al. Fracture properties of polyvinyl alcohol modified cement mortar[J]. Journal of Building Materials, 2016, 19(2): 336-341+358 (in Chinese). [16] LU Z Y, YIN R, YAO J, et al. Surface modification of polyethylene fiber by ozonation and its influence on the mechanical properties of strain-hardening cementitious composites[J]. Composites Part B: Engineering, 2019, 177: 107446. [17] 万小梅, 刘 杰, 朱亚光, 等. 粉煤灰用量和早期养护温度对EGC拉伸性能的影响[J]. 建筑材料学报, 2022, 25(4): 401-407. WAN X M, LIU J, ZHU Y G, et al. Influence of fly ash content and early curing temperature on tensile performance of EGC[J]. Journal of Building Materials, 2022, 25(4): 401-407 (in Chinese). [18] 丁 聪, 郭丽萍, 陈 波, 等. 高强高模PVA纤维表面改性及耐碱性能[J]. 硅酸盐学报, 2019, 47(2): 228-235. DING C, GUO L P, CHEN B, et al. Alkali resistance and surface modification of high strength and high modulus PVA fibers[J]. Journal of the Chinese Ceramic Society, 2019, 47(2): 228-235 (in Chinese). |