[1] 史才军, 何富强, FERNANDEZ-JIMIENEZ A, 等. 碱激发水泥的类型与特点(英文)[J]. 硅酸盐学报, 2012, 40(1): 69-75. SHI C J, HE F Q, FERNANDEZJIMIENEZ A, et al. Classification and characteristics of alkali-activated cements[J]. Journal of the Chinese Ceramic Society, 2012, 40(1): 69-75. [2] 万小梅, 刘国强, 赵铁军, 等. C-(A)-S-H对氯离子的吸附性能研究[J]. 建筑材料学报, 2019, 22(1): 31-37. WAN X M, LIU G Q, ZHAO T J, et al. Investigation on adsorption behavior of chloride by calcium silicate hydrate and calcium aluminum silicate hydrate[J]. Journal of Building Materials, 2019, 22(1): 31-37 (in Chinese). [3] DE WEERDT K, COLOMBO A, COPPOLA L, et al. Impact of the associated cation on chloride binding of Portland cement paste[J]. Cement and Concrete Research, 2015, 68: 196-202. [4] DOUSTI A, BEAUDOIN J J, SHEKARCHI M. Chloride binding in hydrated MK, SF and natural zeolite-lime mixtures[J]. Construction and Building Materials, 2017, 154: 1035-1047. [5] BALONIS M, GLASSER F P. Calcium nitrite corrosion inhibitor in Portland cement: influence of nitrite on chloride binding and mineralogy[J]. Journal of the American Ceramic Society, 2011, 94(7): 2230-2241. [6] HANG M Y, JIANG M H, XU J W, et al. The electrochemical performance and modification mechanism of the corrosion inhibitor on concrete[J]. Science and Engineering of Composite Materials, 2021, 28(1): 352-562. [7] WANG Y Y, SHUI Z H, HUANG Y, et al. Properties of coral waste-based mortar incorporating metakaolin: part II. chloride migration and binding behaviors[J]. Construction and Building Materials, 2018, 174: 433-442. [8] 杨婷丽, 高 旭, 谷 倩, 等. 钙铝质矿相对碱激发矿渣氯离子固化能力的影响研究[J]. 硅酸盐通报, 2022, 41(3): 878-883+902. YANG T L, GAO X, GU Q, et al. Influences of calcium and aluminum mineral phases on chloride binding capacity of alkali-activated slag[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(3): 878-883+902 (in Chinese). [9] TANG L P, NILSSON L O. Chloride binding capacity and binding isotherms of OPC pastes and mortars[J]. Cement and Concrete Research, 1993, 23(2): 247-253. [10] HAAS J, NONAT A. From C-S-H to C-A-S-H: experimental study and thermodynamic modelling[J]. Cement and Concrete Research, 2015, 68: 124-138. [11] 万小梅, 韩 笑, 于 琦, 等. 碱激发矿渣净浆对氯离子的固化作用[J]. 建筑材料学报, 2021, 24(5): 952-960. WAN X M, HAN X, YU Q, et al. Solidification of chloride ions in alkali-activated slag paste[J]. Journal of Building Materials, 2021, 24(5): 952-960 (in Chinese). [12] SHI Z G, GEIKER M R, LOTHENBACH B, et al. Friedel's salt profiles from thermogravimetric analysis and thermodynamic modelling of Portland cement-based mortars exposed to sodium chloride solution[J]. Cement and Concrete Composites, 2017, 78: 73-83. [13] CHEN Y X, SHUI Z H, CHEN W, et al. Chloride binding of synthetic Ca-Al-NO3 LDHs in hardened cement paste[J]. Construction and Building Materials, 2015, 93: 1051-1058. [14] HOU D S, WU C, YANG Q R, et al. Insights on the molecular structure evolution for tricalcium silicate and slag composite: from 29Si and 27Al NMR to molecular dynamics[J]. Composites Part B: Engineering, 2020, 202: 108401. [15] 刘晓海. 面向海砂混凝土的氯离子固化与阻迁材料研究及应用[D]. 武汉: 武汉理工大学, 2020: 39-41. LIU X H. Research and application of chloride ion immobilization and anti-migration materials for sea sand concrete[D]. Wuhan: Wuhan University of Technology, 2020: 39-41 (in Chinese). [16] MOHSENI E, MIYANDEHI B M, YANG J, et al. Single and combined effects of nano-SiO2, nano-Al2O3 and nano-TiO2 on the mechanical, rheological and durability properties of self-compacting mortar containing fly ash[J]. Construction and Building Materials, 2015, 84: 331-340. [17] YANG Z X, FISCHER H, POLDER R. Laboratory investigation of the influence of two types of modified hydrotalcites on chloride ingress into cement mortar[J]. Cement and Concrete Composites, 2015, 58: 105-113. |